Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

  • 2787 Accesses

Historically, most cytogenetics was carried out on (meiotic) pachytene cells where individual chromosomes can be readily identified (e.g. Anderson et al. 2004). A weakness of pachytene analysis is that whole plants must be grown to near maturity to collect samples. Root tip chromosomes offer a simpler way to collect chromosome information, but they have been viewed as too small to accurately identify chromosome variants and cytological features.

The power of mitotic chromosome analysis changed dramatically with the discovery of new FISH methods to label and identify root tip chromosomes. Birchler and colleagues showed that by mixing a collection of repetitive probes labeled with differently colored tags (fluorophores) it was possible to rapidly identify all ten maize chromosomes (Kato et al. 2004). They also introduced an important nitrous oxide method for increasing the number of condensed chromosomes from a single root tip. Subsequently, the same group went on to show that the sensitivity of FISH could be increased dramatically by increasing the amount of a key enzyme (DNA polymerase) in the labeling protocol (Kato et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33:5199–5207

    Article  PubMed  CAS  Google Scholar 

  • Amarillo FI, Bass HW (2007) A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics 177:1509–1526

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166:1923–1933

    Article  PubMed  CAS  Google Scholar 

  • Basu J, Willard HF (2005) Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLOS Genet 3:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Carlson WR (1986) The B-chromosome of maize. Crit Rev Plant Sci 3:201–226

    Article  Google Scholar 

  • Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1: 165–177

    Article  PubMed  CAS  Google Scholar 

  • Danker T, Dreesen B, Offermann S, Horst I, Peterhansel C (2008) Developmental information but not promoter activity controls the methylation state of histone H3 lysine 4 on two photosynthetic genes in maize. Plant J 53(3):456–474

    Article  CAS  Google Scholar 

  • Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Ann Rev Plant Phys Plant Mol Biol 49:371–395

    Article  CAS  Google Scholar 

  • Dawe RK (2005) Centromere renewal and replacement in the plant kingdom. Proc Natl Acad Sci USA 102:11573–11574

    Article  PubMed  CAS  Google Scholar 

  • Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52:615–626

    Article  PubMed  CAS  Google Scholar 

  • Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochro-matic gene silencing in Drosophila. Chromosome Res 14:377–392

    Article  PubMed  CAS  Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88:7006–7010

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets ge-nomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Han F, Gao Z, Yu W, Birchler JA (2007) Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 19:3853–3863

    Article  PubMed  CAS  Google Scholar 

  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin im-munoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Bokkelen GV, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial chromosomes. Nature Genetics 15:345–355

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JM, Feller A, Morohashi K, Frame K, Grotewold E (2007) The basic helix-loop-helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci USA 104:17222–17227

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Schubert I (2007) Engineered plant minichromosomes: a resurrection of B chromosomes? Plant Cell 19:2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of his-tone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Dawe R, Jiang J, Schubert I (2008) Engineered plant minichromosomes — a bottom-up success? Plant Cell 20:8–10

    Article  PubMed  CAS  Google Scholar 

  • Irvine DV, Shaw ML, Choo KH, Saffery R (2005) Engineering chromosomes for delivery of therapeutic genes. Trends Biotechnol 23:575–583

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case of epigenetic effects on centromere identity and function. Trends Genet 13:489–496

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Meyer JM, Birchler JA (2007a) A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region. Chromosoma 116:237–247

    Article  CAS  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA (2007b) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058

    Article  CAS  Google Scholar 

  • Lim HN, Farr CJ (2004) Chromosome-based vectors for Mammalian cells: an overview. Methods Mol Biol 240:167–186

    PubMed  CAS  Google Scholar 

  • Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9:84–90

    Article  PubMed  CAS  Google Scholar 

  • Luce AC, Sharma A, Mollere OS, Wolfgruber TK, Nagaki K, Jiang J, Presting GG, Dawe RK (2006) Precise centromere mapping using a combination of repeat junction markers and chromatin immunoprecipitation-polymerase chain reaction. Genetics 174:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (2004) Planting the seeds of a new paradigm. PLOS Biol 2:582–586

    Article  CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genetics 37:1090–1097

    Article  CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2007) Histone replacement marks the boundaries of cis-regulatory domains. Science 315:1408–1411

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Dawe K (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173:1571–1583

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Nishii K, Okazaki T, Ikeno M (2006) Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem 281:26615–26623

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P (2004) Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 24:6620–6630

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  PubMed  CAS  Google Scholar 

  • Yan HH, Ito H, Nobuta K, Ouyang S, Jin WW, Tian SL, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang JM (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2007a) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175:31–39

    Article  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007b) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  CAS  Google Scholar 

  • Zhang XY, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLOS Biol 5:1026–1035

    CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kelly Dawe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Dawe, R.K. (2009). Applied Cytogenetics. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_17

Download citation

Publish with us

Policies and ethics