Advertisement

The Structure of the Maize Genome

  • Joachim MessingEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 63)

Agriculture is reaching a new era. While in the past, breeding was based on phenotypes, future breeding will be based on knowledge of the genotype. Therefore, the future of agriculture is written into the genome. What conventional breeding cannot achieve is to separate and combine one or a select few genes with the rest of the genes, because during crossing all genes of one parent are transmitted, even those that could neutralize the benefit of another one. But how would one identify single genes of interest and their regulatory components within the total gene pool? Recent estimates are that the maize genome contains between 42,000 and 56,000 genes (Haberer et al. 2005). To identify a gene of interest could be like finding a needle in a haystack. While it has been possible to clone genes based on their gene products or their function, they only represent a tiny portion of the entire gene set. To obtain knowledge about all genes in the genome requires first that we know their structures and position in the genome.

The first genome of a flowering plant that was sequenced was Arabidopsis thaliana, mainly because it has one of the smallest genomes (Arabidopsis Genome Initiative, 2000). Furthermore, it was assumed that the C-value paradox teaches that the complexity of a multicellular organism was not proportional to the size of its genome (Thomas 1971). In other words, the smaller genome could serve as a reference gene set for the larger ones. However, many of the most important crop plants on earth belong to the monocotyledons, and Arabidopsis belongs to the dicotyledons. Indeed, it became clear that the sequence of the Arabidopsis genome is too distant to serve as a reference to monocot crop species. On the other hand, unique genes of the Poaceae, a monocot family, also known as the grasses, are conserved across these species to a degree that they could be used as heterologous probes to detect homologous gene sequences. Therefore, cross-hybridization of genetically mapped gene sequences made it possible to examine syntenic relationships among Poaceae (Hulbert et al. 1990; Whitkus et al. 1992; Ahn and Tanksley 1993). Because this family includes the cereals, it became possible to align entire chromosomal segments of the most important crops regardless of the sizes of their genomes (Moore et al. 1995; Gale and Devos 1998).

Keywords

Maize Genome Synteny Block International Rice Genome Sequencing Project Zein Gene Homoeologous Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984PubMedCrossRefGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot (Lond) 95:45–90CrossRefGoogle Scholar
  4. Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci USA 95:1975–1978PubMedCrossRefGoogle Scholar
  5. Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251PubMedCrossRefGoogle Scholar
  6. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707PubMedCrossRefGoogle Scholar
  7. Clausius R (1868) On the mechanical theory of heat. Philos Mag 40:122Google Scholar
  8. Du C, Swigonova Z, Messing J (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6:62PubMedCrossRefGoogle Scholar
  9. Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974PubMedCrossRefGoogle Scholar
  10. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814PubMedCrossRefGoogle Scholar
  11. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  12. Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KF, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624PubMedCrossRefGoogle Scholar
  13. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255PubMedCrossRefGoogle Scholar
  14. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  15. Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T, Burr F, Costa de Oliveira A, Fuks G, Habara T, Haberer G, Han B, Harada E, Hiraki AT, Hirochika H, Hoen D, Hokari H, Hosokawa S, Hsing Y, Ikawa H, Ikeo K, Imanishi T, Ito Y, Jaiswal P, Kanno M, Kawahara Y, Kawamura T, Kawashima H, Khurana JP, Kikuchi S, Komatsu S, Koyanagi KO, Kubooka H, Lieberherr D, Lin YC, Lonsdale D, Matsumoto T, Matsuya A, McCombie WR, Messing J, Miyao A, Mulder N, Nagamura Y, Nam J, Namiki N, Numa H, Nurimoto S, O'Donovan C, Ohyanagi H, Okido T, Oota S, Osato N, Palmer LE, Quetier F, Raghuvanshi S, Saichi N, Sakai H, Sakai Y, Sakata K, Sakurai T, Sato F, Sato Y, Schoof H, Seki M, Shibata M, Shimizu Y, Shinozaki K, Shinso Y, Singh NK, Smith-White B, Takeda J, Tanino M, Tatusova T, Thongjuea S, Todokoro F, Tsugane M, Tyagi AK, Vanavichit A, Wang A, Wing RA, Yamaguchi K, Yamamoto M, Yamamoto N, Yu Y, Zhang H, Zhao Q, Higo K, Burr B, Gojobori T, Sasaki T (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183PubMedCrossRefGoogle Scholar
  16. Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Paabo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208PubMedCrossRefGoogle Scholar
  17. Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719PubMedCrossRefGoogle Scholar
  18. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073PubMedCrossRefGoogle Scholar
  19. Larson R, Messing J (1982) Apple II software for M13 shotgun DNA sequencing. Nucleic Acids Res 10:39–49PubMedCrossRefGoogle Scholar
  20. Llaca V, Messing J (1998) Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15:211–220PubMedCrossRefGoogle Scholar
  21. Lunde CF, Morrow DJ, Roy LM, Walbot V (2003) Progress in maize gene discovery: a project update. Funct Integr Genomics 3:25–32PubMedGoogle Scholar
  22. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410PubMedCrossRefGoogle Scholar
  23. May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546PubMedCrossRefGoogle Scholar
  24. McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61PubMedCrossRefGoogle Scholar
  25. Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163PubMedCrossRefGoogle Scholar
  26. Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321PubMedCrossRefGoogle Scholar
  27. Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354PubMedCrossRefGoogle Scholar
  28. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676PubMedCrossRefGoogle Scholar
  29. Moore G, Devos K, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  30. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  31. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim H-R, Wing RA, Messing J, Soderlund C (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38PubMedCrossRefGoogle Scholar
  32. Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308PubMedCrossRefGoogle Scholar
  33. Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear hap-lotypes. Proc Natl Acad Sci USA 100:9055–9060PubMedCrossRefGoogle Scholar
  34. Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1549–1555PubMedCrossRefGoogle Scholar
  35. Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930PubMedGoogle Scholar
  36. Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923PubMedCrossRefGoogle Scholar
  37. Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906PubMedCrossRefGoogle Scholar
  38. Thomas CA, Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256PubMedCrossRefGoogle Scholar
  39. Thuriaux P (1977) Is recombination confined to structural genes on the eukaryotic genome? Nature 268:460–462PubMedCrossRefGoogle Scholar
  40. Ueda T, Wang Z, Pham N, Messing J (1994) Identification of a transcriptional activator-binding element in the 27-kilodalton zein promoter, the –300 element. Mol Cell Biol 14:4350–4359PubMedGoogle Scholar
  41. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690PubMedCrossRefGoogle Scholar
  42. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268PubMedCrossRefGoogle Scholar
  43. Wang Z, Ueda T, Messing J (1998) Characterization of the maize prolamin box-binding factor-1 (PBF-1) and its role in the developmental regulation of the zein multigene family. Gene 223:321–332PubMedCrossRefGoogle Scholar
  44. Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123PubMedCrossRefGoogle Scholar
  45. Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120PubMedCrossRefGoogle Scholar
  46. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130PubMedGoogle Scholar
  47. Wilson CM, Spraque GF, Nelsen TC (1989) Linkages among zein genes determined by isoelectric focusing. Theor Appl Genet 77:217–226CrossRefGoogle Scholar
  48. Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52PubMedCrossRefGoogle Scholar
  49. Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH, Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130: 1686–1696PubMedCrossRefGoogle Scholar
  50. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  51. Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2009

Authors and Affiliations

  1. 1.Waksman Institute of MicrobiologyRutgers UniversityPiscatawayUSA

Personalised recommendations