Advertisement

Transposon Tagging and Reverse Genetics

  • A. Mark SettlesEmail author
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 63)

Transposons are mobile genetic elements that can amplify themselves in a genome. Transposable elements were first discovered in maize (McClintock 1948) and have been found to exist in all organisms. Transposons have multiple modes of movement or transposition, which is used to group the elements into two major classes, based on having an RNA or a DNA intermediate during transposition (reviewed in Hua-Van et al. 2005). The maize genome contains examples of most known transposon families including long terminal repeat (LTR) and non-LTR retrotransposons (class I), which use RNA intermediates, as well as class II DNA elements (Bruggmann et al. 2006). Maize class II elements tend to insert near or within genes (Bureau and Wessler 1992; Cowperthwaite et al. 2002; Fernandes et al. 2004; Kolkman et al. 2005; Kumar et al. 2005; McCarty et al. 2005; Settles et al. 2004). Transposition into genes can cause mutant phenotypes, and transposons are used as endogenous mutagens. This chapter focuses on the use of maize DNA transposons in molecular genetics and functional genomics studies.

With the exception of helitrons, DNA transposons share some common molecular and genetic properties. DNA elements have terminal inverted repeats as well as autonomous and non-autonomous transposons (Hua-Van et al. 2005). Autonomous elements encode the genes required for transposition. Non-autonomous transposons contain sequences recognized by transposase proteins and can move only in the presence of an autonomous element. Non-autonomous elements either have mutations in transposase genes or have replaced them with other sequences. DNA transposons also create target site duplications at the site of insertion. The length of the duplication is specific to each family of element. The major families of maize transposons that have been used as mutagens include Activator and Dissociation (Ac/Ds), Enhancer/Suppressor-mutator (En/Spm), and Robertson's Mutator (Mu). These families were identified because they cause unstable mutations (McClintock 1950, 1954; Peterson 1960; Robertson 1978). The instability of many transposon-induced alleles is due to excision events or epigenetic regulation of the transposons. The structures, mechanisms of transposition, and epigenetic regulation of Ac/Ds, En/Spm, and Mu are discussed in greater detail in multiple reviews (see Kunze and Weil 2002; Lisch 2002; Walbot and Rudenko 2002).

Keywords

Long Terminal Repeat Reverse Genetic Maize Genome Lateral Organ Boundary Domain Somatic Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide inser-tional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  2. Athma P, Grotewold E, Peterson T (1992) Insertional mutagenesis of the maize P gene by intra-genic transposition of Ac. Genetics 131:199–209PubMedGoogle Scholar
  3. Auger DL, Sheridan WF (1999) Maize stocks modified to enhance the recovery of Ac-induced mutations. J Hered 90:453–459CrossRefGoogle Scholar
  4. Barker RF, Thompson DV, Talbot DR, Swanson J, Bennetzen JL (1984) Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res 12:5955–5967PubMedCrossRefGoogle Scholar
  5. Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84PubMedCrossRefGoogle Scholar
  6. Bingham PM, Levis R, Rubin GM (1981) Cloning of DNA sequences from the White locus of Drosophila melanogaster by a novel and general method. Cell 25:693–704PubMedCrossRefGoogle Scholar
  7. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine- rich repeat receptor-like kinase. Development 132:1235–1245PubMedCrossRefGoogle Scholar
  8. Bortiri E, Jackson D, Hake S (2006a) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171CrossRefGoogle Scholar
  9. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006b) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585CrossRefGoogle Scholar
  10. Brown WE, Robertson DS, Bennetzen JL (1989) Molecular analysis of multiple Mutator-derived alleles of the Bronze locus of maize. Genetics 122:439–445PubMedGoogle Scholar
  11. Bruggmann R, Bharti AK, Gundlach H, Lai JS, Young S, Pontaroli AC, Wei FS, Haberer G, Fuks G, Du CG, Raymond C, Estep MC, Liu RY, Bennetzen JL, Chan AP, Rabinowicz PD, Quack- enbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KFX, Messing J (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res 16:1241–1251PubMedCrossRefGoogle Scholar
  12. Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294PubMedCrossRefGoogle Scholar
  13. Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, Howard RJ, Rafalski A (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224:1174–1184PubMedCrossRefGoogle Scholar
  14. Chomet P, Lisch D, Hardeman KJ, Chandler VL, Freeling M (1991) Identification of a regulatory transposon that control the Mutator transposable element system in maize. Genetics 129:261– 270PubMedGoogle Scholar
  15. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  16. Chung T, Kim CS, Nguyen HN, Meeley RB, Larkins BA (2007) The maize Zmsmu2 gene encodes a putative RNA-splicing factor that affects protein synthesis and RNA processing during endosperm development. Plant Physiol 144:821–835PubMedCrossRefGoogle Scholar
  17. Cook WB, Miles D (1988) Transposon mutagenesis of nuclear photosynthetic genes in Zea mays. Photosynth Res 18:33–59CrossRefGoogle Scholar
  18. Cowperthwaite M, Park W, Xu ZN, Yan XH, Maurais SC, Dooner HK (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726PubMedCrossRefGoogle Scholar
  19. Dooner HK, Belachew A (1989) Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122:447–457PubMedGoogle Scholar
  20. Dooner HK, Belachew A, Burgess D, Harding S, Ralston M, Ralston E (1994) Distribution of unlinked receptor-sites for transposed Ac elements from the bz-m2(Ac) allele in maize. Genetics 136:261–279PubMedGoogle Scholar
  21. Earp DJ, Lowe B, Baker B (1990) Amplification of genomic sequences flanking transposable elements in host and heterologous plants—a tool for transposon tagging and genome characterization. Nucleic Acids Res 18:3271–3279PubMedCrossRefGoogle Scholar
  22. Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62PubMedCrossRefGoogle Scholar
  23. Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242PubMedCrossRefGoogle Scholar
  24. Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81:3825–3829PubMedCrossRefGoogle Scholar
  25. Fernandes J, Dong QF, Schneider B, Morrow DJ, Nan GL, Brendel V, Walbot V (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82PubMedCrossRefGoogle Scholar
  26. Frey M, Stettner C, Gierl A (1998) A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J 13:717–721CrossRefGoogle Scholar
  27. Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single gene mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829PubMedCrossRefGoogle Scholar
  28. Golubovskaya IN, Hamant O, Timofejeva L, Wang C-JR, Braun D, Meeley R, Cande WZ (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119: 3306–3315PubMedCrossRefGoogle Scholar
  29. Greenblatt IM (1984) A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108:471–485PubMedGoogle Scholar
  30. Gutierrez-Marcos JF, Dal Pra M, Giulini A, Costa LM, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson HG, Consonni G (2007) empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell 19:196–210PubMedCrossRefGoogle Scholar
  31. Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande WZ (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15:948– 954PubMedCrossRefGoogle Scholar
  32. Hanley S, Edwards D, Stevenson D, Haines S, Hegarty M, Schuch W, Edwards KJ (2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J 23:557–566PubMedCrossRefGoogle Scholar
  33. Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110:426–440PubMedCrossRefGoogle Scholar
  34. Kim CS, Gibbon BC, Gillikin JW, Larkins BA, Boston RS, Jung R (2006) The maize Mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant J 48:440–451PubMedCrossRefGoogle Scholar
  35. Kolkman JM, Conrad LJ, Farmer PR, Hardeman K, Ahern KR, Lewis PE, Sawers RJH, Lebejko S, Chomet P, Brutnell TP (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169:981–995PubMedCrossRefGoogle Scholar
  36. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892PubMedCrossRefGoogle Scholar
  37. Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig Nl, Craigie M, Gellert Am, Lambowitz Am (eds) Mobile DNA II. ASM Press, Washington, DC, pp 533–564Google Scholar
  38. Lal SK, Giroux MJ, Brendel V, Vallejos CE, Hannah LC (2003) The maize genome contains a Helitron insertion. Plant Cell 15:381–391PubMedCrossRefGoogle Scholar
  39. Levy AA, Britt AB, Luehrsen KR, Chandler VL, Warren C, Walbot V (1989) Developmental and genetic-aspects of Mutator excision in maize. Dev Genet 10:520–531PubMedCrossRefGoogle Scholar
  40. Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB, McElver J, Bowen B, Cande WZ, Schnable PS (2007) Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 176:1469–1482PubMedCrossRefGoogle Scholar
  41. Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu XM, Meeley R, Nichols S, Olsen OA (2002) The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465PubMedCrossRefGoogle Scholar
  42. Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504PubMedCrossRefGoogle Scholar
  43. Liu WT, Gao YJ, Teng F, Shi Q, Zheng YL (2006) Construction and genetic analysis of Mutatorinsertion mutant population in maize. Chinese Sci Bull 51:2604–2610CrossRefGoogle Scholar
  44. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Ara- bidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8: 457–463PubMedCrossRefGoogle Scholar
  45. Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274PubMedCrossRefGoogle Scholar
  46. May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan XK, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546PubMedCrossRefGoogle Scholar
  47. McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai JS, Messing J, Koch KE, Hannah LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61PubMedCrossRefGoogle Scholar
  48. McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Year B 47:155–169Google Scholar
  49. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355PubMedCrossRefGoogle Scholar
  50. McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Year B 56:415–429Google Scholar
  51. McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) Barren inflores- cence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organo- genesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000– 1011PubMedCrossRefGoogle Scholar
  52. Moreno MA, Chen J, Greenblatt I, Dellaporta SL (1992) Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics 131:939–956PubMedGoogle Scholar
  53. Muszynski MG, Dam T, Li B, Shirbroun DM, Hou ZL, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142:1523–1536PubMedCrossRefGoogle Scholar
  54. Peterson PA (1960) The pale green mutable system in maize. Genetics 45:115–133PubMedGoogle Scholar
  55. Philippar K, Buchsenschutz K, Edwards D, Loffler J, Luthen H, Kranz E, Edwards KJ, Hedrich R (2006) The auxin-induced K+ channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. Plant Mol Biol 61:757–768PubMedCrossRefGoogle Scholar
  56. Pohlman RF, Fedoroff NV, Messing J (1984) The nucleotide-sequence of the maize controlling element Activator. Cell 37:635–643PubMedCrossRefGoogle Scholar
  57. Porch TG, Tseung CW, Schmelz EA, Settles AM (2006) The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J 45:250–263PubMedCrossRefGoogle Scholar
  58. Raizada MN, Nan GL, Walbot V (2001) Somatic and germinal mobility of the RescueMu transpo- son in transgenic maize. Plant Cell 13:1587–1608PubMedCrossRefGoogle Scholar
  59. Robertson DS (1978) Characterization of a mutator system in maize. Mut Res 51:21–28Google Scholar
  60. Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259PubMedCrossRefGoogle Scholar
  61. Samson F, Brunaud V, Duchene S, De Oliveira Y, Caboche M, Lecharny A, Aubourg S (2004) FLAGdb(++): a database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res 32:D347–D350PubMedCrossRefGoogle Scholar
  62. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230PubMedCrossRefGoogle Scholar
  63. Sawers RJH, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106PubMedCrossRefGoogle Scholar
  64. Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS (1994) Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics 136:281–294PubMedGoogle Scholar
  65. Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus Opaque-2. Science 238:960–963PubMedCrossRefGoogle Scholar
  66. Schnable PS, Peterson PA, Saedler H (1989) The Bz-Rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion. Mol Gen Genet 217:459–463PubMedCrossRefGoogle Scholar
  67. Schwarz-Sommer Z, Gierl A, Klosgen RB, Wienand U, Peterson PA, Saedler H (1984) The Spm (En) transposable element controls the excision of a 2-Kb DNA insert at the wx-m8 allele of Zea mays. EMBO J 3:1021–1028PubMedGoogle Scholar
  68. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994PubMedCrossRefGoogle Scholar
  69. Settles AM, Latshaw S, McCarty DR (2004) Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res 32:e54PubMedCrossRefGoogle Scholar
  70. Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O'Brien BA, Fajardo DS, Wroclawska E, Tseung CW, Lai JS, Hunter CT, Avigne WT, Baier J, Messing J, Hannah LC, Koch KE, Becraft PW, Larkins BA, McCarty DR (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8Google Scholar
  71. Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007) Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J 49:338–353PubMedCrossRefGoogle Scholar
  72. Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719PubMedCrossRefGoogle Scholar
  73. Singh M, Lewis PE, Hardeman K, Bai L, Rose JKC, Mazourek M, Chomet P, Brutnell TP (2003) Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell 15:874– 884PubMedCrossRefGoogle Scholar
  74. Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301PubMedCrossRefGoogle Scholar
  75. Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489PubMedCrossRefGoogle Scholar
  76. Suzuki M, Settles AM, Tseung CW, Li QB, Latshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J 45:264–274PubMedCrossRefGoogle Scholar
  77. Taramino G, Sauer M, Stauffer JL, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659PubMedCrossRefGoogle Scholar
  78. Taylor WC, Barkan A, Martienssen RA (1987) Use of nuclear mutants in the analysis of chloroplast development. Dev Genet 8:305–320PubMedCrossRefGoogle Scholar
  79. Vollbrecht E, Springer PS, Goh L, Buckler IV ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126PubMedCrossRefGoogle Scholar
  80. Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Plant Mol Biol 43:49–82CrossRefGoogle Scholar
  81. Walbot V, Rudenko GN (2002) MuDR/Mu transposable elements in maize. In: Craig Nl, Craigie M, Gellert Am, Lambowitz Am (eds) Mobile DNA II. ASM Press, Washington, DC, pp 533–564Google Scholar
  82. Walbot V, Warren C (1988) Regulation of Mu-element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211:27–34PubMedCrossRefGoogle Scholar
  83. Wen T-J, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643PubMedCrossRefGoogle Scholar
  84. Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces WAXY proteins with a range of enzymatic activities. EMBO J 5:2427–2432PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2009

Authors and Affiliations

  1. 1.Horticultural Sciences Department and Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleUSA

Personalised recommendations