Skip to main content

Own Weight Flexure and Figure Control of Telescope Mirrors

  • Chapter
Astronomical Optics and Elasticity Theory

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1648 Accesses

Abstract

Foucault solved the problem of maintaining a mirror with a high reflective coating by introducing glass mirrors, which then can be easily re-silvered after chemical removal of the tarnished coating. This ended the era of speculum metal mirrors which required, when tarnished, a repolishing within a seeing limited – or diffraction limited – criterion. The chemical process was later replaced by the vacuum deposition process by J. Strong (cf. Sect. 1.1.5).

The next problems for the primary mirror of large telescopes were to minimize their elastic deflection under gravity – or own weight deformation – and also that resulting from thermal gradients. This latter problem was appropriately solved by the inventions and developments of low expansion materials such as Pyrex, Sitall, fused silica, vitrocerams, and silicon carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R.P. Angel, B. Martin, D. Sandler et al., The next generation space telescope: a monolithic mirror candidate, SPIE Proc., 2807, 354 (1996)

    ADS  Google Scholar 

  2. L. Arnold, Influence functions of a thin shallow meniscus-shaped mirror, Appl. Opt., 36(10), 2019–2028 (1997)

    ADS  Google Scholar 

  3. L. Arnold, Optimized axial support topologies for thin telescope mirrors, Opt. Eng., 34, 567–574 (1995)

    ADS  Google Scholar 

  4. L. Arnold, Optimized mirror supports and active primary mirrors, SPIE Proc., 2199, 239–250 (1994)

    ADS  Google Scholar 

  5. L. Arnold, Uniform-load and actuator influence functions of a thin annular mirror: application to active mirror support optimization, Appl. Opt., 35(7), 1095–1106 (1996)

    ADS  Google Scholar 

  6. Y.Y. Balega, private communication (2007)

    Google Scholar 

  7. A. Baranne, G.R. Lemaitre, Combinaison optique pour très grands télescopes: le concept TEMOS, C.R. Acad. Sc. Paris, 305, Série II, 445–450 (1987)

    Google Scholar 

  8. P.Y. Bely, The Design and Construction of Large Optical Telescopes, Springer edt., New York, 221 (2002)

    Google Scholar 

  9. I.S. Bowen, The 200-inch Hale Telescope, in Telescopes, G.P. Kuiper & B.M. Midlehurst edts., The University of Chicago Press, Chicago, 2nd issue, 1–15 (1962)

    Google Scholar 

  10. I.S. Bowen, The 200-inch Hale telescope, IAU Proc., vol. VIII, 5,750–754 (1953)

    Google Scholar 

  11. G. Chanan, C. Ohara, M. Troy, Phasing the primary mirror of the Keck telescopes II, Appl. Opt., 39(25), 4706–4714 (2000)

    ADS  Google Scholar 

  12. G. Chanan, J. Nelson, T. Mast, P. Wisinowich, B. Schaefer, The Keck telescope phasing camera system, SPIE Proc., 2198, 1139–1150 (1994)

    ADS  Google Scholar 

  13. G. Chanan, M. Troy, Strehl ratio and modulation transfer function for segmented mirror telescopes as function of the segment phase error, Appl. Opt., 38(31), 6642–6647 (2000)

    ADS  Google Scholar 

  14. G. Chanan, T. Mast, J. Nelson, Phasing the mirror segments of the Keck Telescope, SPIE Proc., 2199, 622–637 (1994)

    ADS  Google Scholar 

  15. J.-P. Chevillard, P. Connes et al., Near infrared astronomical light collector, Appl. Opt., 16(7), 1817–1833 (1977)

    ADS  Google Scholar 

  16. P. Connes, G. Michel, Astronomical Fourier spectrometer, Appl. Opt., 14(9), 2067–2084 (1975)

    ADS  Google Scholar 

  17. A. Couder, Recherches sur les déformations des grands miroirs – Effets thermiques: Déformations des miroirs, agitation de l’air, Bull. Astronomique Obs. Paris, VII, Fasc. 7, 19–312 (1932). [Cf. also transl. E.T. Pearson, KPNO Library (1966)]

    Google Scholar 

  18. A. Couder, Recherches sur les déformations des grands miroirs employés aux observations astronomiques, Bull. Astronomique Obs. Paris, VII, Fasc. 6, 201–281 (1931). [Cf. also transl. E.T. Pearson, KPNO Library (1966)]

    Google Scholar 

  19. J.F. Creedon, A.G. Lindgren, Automatica, 6(5), 643 (1970)

    Google Scholar 

  20. S. Cuevas, V.G. Orlov, F. Garfias et al., Curvature equation for a segmented telescope, SPIE Proc., 4003, 291–302 (2000)

    ADS  Google Scholar 

  21. S. Cuevas, V.G. Orlov, F. Garfias, V.V. Voitsekhovich, L. Sanchez, Curvature equation for a segmented telescope, SPIE Proc., 4003, 291–302 (2000)

    ADS  Google Scholar 

  22. X. Cui, D.-q. Su, G. Li et al., Experiment system of LAMOST active optics, SPIE Proc., 5489, 974–985 (2004)

    ADS  Google Scholar 

  23. X. Cui, Y. Li, X. Ni et al., The active support system of LAMOST reflective Schmidt plate, SPIE Proc., 4837, 628–636 (2003)

    ADS  Google Scholar 

  24. X. Cui, D.-q. Su, Y.-n. Wang, G. Li, G. Li, Y. Zhang, Y. Li, The optical performance of LAMOST telescope, SPIE Proc., 7733 (2010)

    Google Scholar 

  25. P. Dierickx, D. Enard, R. Geyl, J. Paseri, M. Cayrel, P. Béraud, The VLT primary mirrors, SPIE Proc., 2871, 385–392 (1996) (see also www.eso.org/projects/vlt/unit-tel/m1unit.html)

    Google Scholar 

  26. D. Enard, ESO-VLT: status of the main 8-m telescopes, SPIE Proc., 2199, 394–403 (1994)

    ADS  Google Scholar 

  27. S. Esposito, E. Pinna, A. Puglisi, A. Tozzi, P. Stefanini, Pyramid sensor for segmented mirror alignment, Opt. Lett., 30(19), 2572–2574 (2005)

    ADS  Google Scholar 

  28. L. Foucault, Annales de l’Observatoire de Paris, 5, 197–237 (1859)

    ADS  Google Scholar 

  29. P. Giordano, Internal ESO report, Paranal (2002)

    Google Scholar 

  30. J.M. Hill, J.R.P. Angel, R.D. Lutz et al., Casting the first 8.4 m borosilicate honeycomb mirror for the Large Binocular Telescope, SPIE Proc., 3352, 172 (1998)

    ADS  Google Scholar 

  31. W.E. Howell, J.F. Creedon, NASA Technical Note, NASA TN D-7090 (Jan. 1973)

    Google Scholar 

  32. http://grus.berkeley.edu/_~jrg/MIDDLE/

    Google Scholar 

  33. http://w0.sao.ru/Doc-en/Telescopes/bta/descrip.html

    Google Scholar 

  34. N. Itoh, I. Mikami et al., Active optics experiments II, Publ. Natl. Astron. Obs. Japan., 1, 57–61 (1989)

    ADS  Google Scholar 

  35. M. Iye, K. Kodaira, Primary support system for the SUBARU telescope, SPIE Proc., 2199, 762–772 (1994)

    ADS  Google Scholar 

  36. M. Iye, R. Noguchi, Y. Torii et al., Active optics experiments with a 62 cm thin mirror, SPIE Proc., 1236, 929–939 (1990)

    ADS  Google Scholar 

  37. N. Kaifu, SUBARU project: current status, SPIE Proc., 2199, 56–63 (1994)

    ADS  Google Scholar 

  38. V.L. Krabbendam, T.A. Sebring, F.B. Ray, S.R. Fowler, Development and performance of Hooby-Herberly Telescope 11 meter segmented mirror, SPIE Proc., 3352, 436–445 (1998)

    ADS  Google Scholar 

  39. L.D. Landau, E.M. Lifshitz, Theory of Elasticity in Course of Theoretical Physics – Vol. 7, USSR Acad. of Sc., Butterworth & Heinemann eds, 3rd edition, Pergaman press, Oxford, 67 (1986)

    Google Scholar 

  40. W. Lassell, Mem. Roy. Astron. Soc., XII, 265 (1842)

    ADS  Google Scholar 

  41. G.R. Lemaitre, M. Wang, Optical results with TEMOS 4 and a metal secondary mirror actively aspherized, SPIE Proc., 1931, 43–52 (1992)

    ADS  Google Scholar 

  42. G.R. Lemaitre, R.N. Wilson, S. Mazzanti, Proposal for a 1.8 m meter metal meniscus mirror at once actively aspherized and actively supported, SPIE Proc., 1931, 67–75 (1992)

    Google Scholar 

  43. G.R. Lemaitre, Sur la flexion des miroirs secondaires de télescopes, Nouv. Rev. Optique, 7(6), 389–397 (1976)

    ADS  Google Scholar 

  44. G.R. Lemaitre, Sur la flexion du grand miroir de 3.6 m ESO, ESO Bull., 8, 21–31 (1971)

    Google Scholar 

  45. A.E.H. Love, Mathematical Theory of Elasticity, first and second edition. See also fourth revised enlarged issue (1927). Reissued by Dover publ., New York, Sects. 299, 309 and 312c (1944)

    Google Scholar 

  46. A.F. Möbius, in Lehrbuch der Statik, 2 vols., Leipzig, Vol. 2, Chaps. 4 and 5 (1837)

    Google Scholar 

  47. B. Mack, Deflection and stress analysis of a 4.2 m primary mirror of an alt-azimuth mounted telescope, Appl. Opt., 19(6), 1000–1010 (1980)

    ADS  Google Scholar 

  48. A.J. Malvick, E.T. Pearson, Theoretical elastic deformation of a 4-m diameter optical mirror using dynamic relaxation, Appl. Opt., 7(6), 1207–1212 (1968)

    ADS  Google Scholar 

  49. J-P. Marioge, C. Mahé, Contribution au contrôle des surfaces planes non traitées, Journ. Mod. Optics, Taylor & Francis publ., 20(6), 413–433 (1973)

    Google Scholar 

  50. T. Mast, G. Nelson, SPIE Proc., 1236, 670 (1990)

    ADS  Google Scholar 

  51. J.H. Michell, London Math. Soc. Proc., 31, 100 (1900)

    Google Scholar 

  52. L. Montoya-Martinez, N. Yaitskova, P. Dierickx, K. Dohlen, Mach-Zender wavefront sensor for phasing of segmented telescopes, SPIE Proc., 4840, 564–573 (2003)

    ADS  Google Scholar 

  53. L. Montoya-Martinez, M. Reyes, A. Schumacher, E. Hernández, DIPSI: the diffraction image phase sensing instrument for APE, SPIE Proc., 6267, (2006)

    Google Scholar 

  54. C.M. Mountain, R. Kurz, J. Oschmann, GEMINI 8-m telescope project, SPIE Proc., 2199, 41–55 (1994)

    ADS  Google Scholar 

  55. J.E. Nelson, J. Lubliner, T.S. Mast, Telescope mirror supports: Mirror deflection on point supports, SPIE Proc., 332, 212 (1982)

    ADS  Google Scholar 

  56. J.E. Nelson, J. Lubliner, T.S. Mast, Telescope mirror supports, SPIE Proc., 332, 212–228 (1982)

    ADS  Google Scholar 

  57. C. Neufeld, V. Bennet, T. Sebring, V. Krabbendam et al., Development of an active optics system for the SOAR telescope, SPIE Proc., 5489, 1052–1060 (2004)

    ADS  Google Scholar 

  58. L. Noethe et al., Proc. ESO Conf. on Progress in Telescope and Instrumentation technologies, ESO, Garching, 195 (1992)

    Google Scholar 

  59. L. Noethe, Active optics in modern large optical telescopes, Progress in Optics, Elsevier publ., 43, 1–13 (2002)

    ADS  Google Scholar 

  60. L. Noethe, F. Franza, P. Giorgano, R.N. Wilson, Active Optics II. Results of an experiment with a thin 1 m test mirror, J. Mod. Opt., 35, 1427–1457 (1988)

    ADS  Google Scholar 

  61. L. Noethe, private communication (2006)

    Google Scholar 

  62. L. Noethe, Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors, J. Mod. Opt., 38(6), 1043–1046 (1991)

    ADS  Google Scholar 

  63. D. O’Donoghue, The correction of spherical aberration in the Southern African Large Telescope (SALT), SPIE Proc., 4003, 363–370 (2000)

    Google Scholar 

  64. G. Parodi, G.C. Cerra, J.M. Hill, W.B. Davison, P. Salinari, LBT primary mirror: the final design of the supporting system, SPIE Proc., 2871, 352–359 (1997)

    ADS  Google Scholar 

  65. A. Rakich, J.M. Hill, C.J. Biddick, D.L. Miller, T. Leibold, Use of field aberrations in the alignment of the Large Binocular Telescope optics, SPIE Proc., 7012 (2008)

    Google Scholar 

  66. E. Reissner, J. Appl. Mech., 12, A-69 (1945)

    MathSciNet  Google Scholar 

  67. E. Reissner, Quart. Appl. Math., 5, 55 (1947)

    MathSciNet  Google Scholar 

  68. C. Roddier, F. Roddier, Wavefront reconstruction from defocused images and the testing of ground-based optical telescopes, J. Opt. Soc. Am., A, 10(11), 3433–3436 (1988)

    Google Scholar 

  69. A. Saint-Venant (Barré de), Flamant, Théorie de l’Élasticité des Corps Solides de Clebsch, Dunod edt., Paris, 858–859 (1881). (French transl. of Clebsch’s book including important annotations and complements; sometimes referred to as “Clebsch Annoted Version”)

    Google Scholar 

  70. M. Schneermann, X. Cui et al., SPIE Proc., 1236, 920 (1990)

    ADS  Google Scholar 

  71. G. Schwesinger, An analytical determination of the flexure of the 3.5 m primary and 1 m mirror of the ESO New Technology Telescope for passive support and active control, J. Mod. Opt., 35, 1117–1149 (1988)

    ADS  Google Scholar 

  72. G. Schwesinger, Comparative assessment of aberrations originating in telescope mirrors from the edge support. Astron. J., 74, 1243–1254 (1969)

    ADS  Google Scholar 

  73. G. Schwesinger, E.D. Knol, Comments on a series of articles by L.A. Selke, Appl. Opt., 11, 200–201 (1972)

    ADS  Google Scholar 

  74. G. Schwesinger, General characteristics of elastic mirror flexure in theory and applications, Symposium Proc. on Support and Testing of Large Astronomical Mirrors, KPNO, Tucson, 10–23 (1966)

    Google Scholar 

  75. G. Schwesinger, Lateral support of very large telescope mirrors by edge forces only, J. Mod. Opt., 38, 1507–1516 (1991)

    ADS  Google Scholar 

  76. G. Schwesinger, Non-distorting lateral edge support of large telescope mirrors, Appl. Opt., 33(7), 1198–1202 (1994)

    ADS  Google Scholar 

  77. G. Schwesinger, Optical effect of flexure in vertically mounted precision mirrors, J. Opt. Soc. Am., 44, 417 (1954)

    ADS  Google Scholar 

  78. G. Schwesinger, Support configuration and elastic deformation of the 1.5 m prime mirror of the ESO Coudé Auxiliary Telescope (CAT), European Southern Observatory Tech. Rep. 9, Garching (1972)

    Google Scholar 

  79. L.A. Selke, Theoretical elastic deflections of a thick horizontal circular mirror on a double-ring support, Appl. Opt., 9(6), 1453–1456 (1970)

    ADS  Google Scholar 

  80. S. Stanghellini, E. Manil, M. Schmid, K.Dost, Design and preliminary tests of the VLT secondary mirror unit, SPIE Proc., 2871, 105–116 (1996)

    ADS  Google Scholar 

  81. L. Stepp, Conceptual design of the primary mirror cell assembly, GEMINI Report O-G0025 (1993)

    Google Scholar 

  82. L. Stepp, E. Huang, M. Cho, GEMINI primary mirror support system, SPIE Proc., 2199, 223–238 (1994)

    ADS  Google Scholar 

  83. B. Stobie, K. Meiring, D.A.H. Buckley, Design of the Southern African Large Telescope, in Optical Design, Material, Fabrication and Maintenance, SPIE Proc., 4003, 355–362 (2000)

    Google Scholar 

  84. D.-q. Su, S.-t. Jiang, W.-y. Zou et al., Experiment system of thin-mirror active optics, SPIE Proc., 2199, 609–621 (1994)

    ADS  Google Scholar 

  85. D-q. Su, W-j. Zou, Z-c. Zhang et al., Experiment system of segmented-mirror active optics, SPIE Proc., 4003, 417–425 (2000)

    ADS  Google Scholar 

  86. D.-q. Su, X. Cui, Y.-n. Wang, Z. Yao, LAMOST and its key technology, SPIE Proc., 3352, 76–90 (1998)

    ADS  Google Scholar 

  87. D.-q. Su, Y.-n. Wang, A computational study of the star-image displacement due to differential atmospheric refraction during observations, Acta Astrophysica Sinica, 17, 202–212 (1997)

    ADS  Google Scholar 

  88. H. Tafelmaier, Dünnschicht-Tecknik Co., www.tafelmaier.de/eng/default.asp

    Google Scholar 

  89. S.P. Timoshenko, in History of Strength of Materials, Dover Publ. Inc., New York, 304 (1983)

    Google Scholar 

  90. S.P. Timoshenko, S. Woinowsky-Krieger, in Theory of Plates and Shells, McGraw-Hill edt., New York, second issue, Sect. 20, 74 (1959)

    Google Scholar 

  91. D.S. Wan, J.P.R. Angel, R.E. Parks, Mirror deflection on multiple axial supports, Appl. Opt., 28, 354–362 (1989)

    ADS  Google Scholar 

  92. R.N. Wilson, F. Franza, L. Noethe, Active optics I. A system for optimizing the optical quality and reducing the costs of large telescopes, J. Mod. Opt., 34, 485–509 (1987)

    ADS  Google Scholar 

  93. R.N. Wilson, F. Franza, L. Noethe, G. Andreoni, Active Optics IV. Set-up and performance of the optics of the ESO New Technology Telescope (NTT) in the observatory, J. Mod. Opt., 38, 219–243 (1991)

    ADS  Google Scholar 

  94. R.N. Wilson, F. Franza, P. Giordano, L. Noethe, M. Tarenghi, Active Optics III. Final results with the 1 m test mirror and NTT 3.56 m primary in the workshop, J. Mod. Opt., 36, 1415–1425 (1989)

    ADS  Google Scholar 

  95. R.N. Wilson, Reflecting Telescope Optics II, Springer-Verlag edt., New York, (1999)

    Google Scholar 

  96. S. Woinowsky-Krieger, Ingr. Arch., 4, 305 (1933)

    Google Scholar 

  97. R.W. Wood, Astrophys. J., 29, 164 (1909)

    ADS  Google Scholar 

  98. www.telescopengineering.com/company/DmitriMaksutov.html

    Google Scholar 

  99. N. Yaitskova, K. Dohlen, P. Dierickx, Analytical study of diffraction effects in extremely large segmented telescopes, JOSA A, 20(8), 1563–1575 (2003)

    ADS  Google Scholar 

  100. N. Yaitskova, K. Dohlen, Tip-tilt error for extremely large segmented telescopes: detailed theoretical point-spread-function analysis and numerical simulation results, JOSA A, 19(7), 1274–1285 (2002)

    ADS  Google Scholar 

  101. N. Yaitskova, L.-M. Montoya-Martinez, K. Dohlen, P. Dierickx, A Mack-Zender phasing sensor for extremely large segmented telescopes, SPIE Proc., 5489, 1139–1151 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemaitre, G. (2009). Own Weight Flexure and Figure Control of Telescope Mirrors. In: Astronomical Optics and Elasticity Theory. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68905-8_8

Download citation

Publish with us

Policies and ethics