Skip to main content

Optical Design with the Schmidt Concept – Telescopes and Spectrographs

  • Chapter
Astronomical Optics and Elasticity Theory

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1702 Accesses

Abstract

The basic principle of the wide-field telescope invented by the Estonian optician and astronomer Bernhard Schmidt in 1928 ([67–70], E. Schmidt [72]), is that a single concave and spherical mirror used with a pupil stop at its center of curvature has no unique axis and therefore yields equal size images at all points of its field of view. In the third-order theory, the mounting is free from Coma3 and astigmatism Astm3; all images have the same amount of spherical aberration, Sphe3, coming from the spherical mirror. By using a refractive corrector plate at the mirror center of curvature, one therefore yields equally good images in the whole field of view. In the historical context in Europe, three scientists had previously developed the theoretical analysis on aplanatic telescopes in the two-mirror class, but none of them found or realized that the primary mirror could be used off-axis or could be replaced by an on-axis refractive element. Kellner who patented in 1910 [25] several designs using a corrector lens, locates the plate in a wrong position for wide-field compensations. Schmidt placed the aspherical plate at the mirror center of curvature and emphasized the importance of this location for the entrance pupil of the telescope. The curved focal surface is a monocentric sphere with the mirror. In 1930–31, he succeeded in constructing the first wide-field telescope, 36 cm clear aperture at f/1.75, with which he demonstrated the wide-field performance on 7.5 arc degrees during the two subsequent years. He obtained with Wachmann, about two hundred exposures onto curved films showing perfect images. Such astronomical object densities were never seen before. In 1932, Schmidt published his famous article “Ein Lichtstarkes Komafreies Spiegelsystem” [70] and photographies [71]. In fact, his coma-free i.e. aplanatic telescope is also free from third-order astigmatism: nowadays, this is called an anastigmatic telescope. Review papers on B. Schmidt’s work were published by Schorr [73], Mayall [47], Wachmann [84, 85], Kross [27] and more recently by E. Schmidt [72], his nephew.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Arns, W.S. Colburn, S.C. Barden, Volume phase gratings for spectroscopy, in Current Developments in Optical Design VIII, SPIE Proc., 3779, 313–323 (1999)

    Google Scholar 

  2. J.G. Baker, A family of flat-field cameras, equivalent in performance to the Schmidt cameras, Proc. Am. Philos. Soc., 82, 339 (1940)

    Google Scholar 

  3. J.G. Baker, US Patent No 2 458 132 (1945)

    Google Scholar 

  4. A. Baranne, Un nouveau montage spectrographique, Comptes Rendus, 260, 3283–3286 (1965)

    Google Scholar 

  5. A. Baranne, M. Mayor, J.-L. Poncet, Coravel – A new tool for radial velocity measurements, Vistas Astro., 23, 279–316 (1979)

    ADS  Google Scholar 

  6. S.C. Barden, J.A. Arns, W.S. Colburn, Volume-phase holographic gratings, in Current Developments in Optical Design VIII, SPIE Proc., 3779, 313–323 (1999)

    Google Scholar 

  7. M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge 253 (1999)

    Google Scholar 

  8. O. Boulade, G.R. Lemaitre, L. Vigroux, UV prime focus spectrograph for the CFHT, Astron. Astrophys., 163, 301–306 (1986)

    ADS  Google Scholar 

  9. A. Bouwers, in New Optical Systems – Achievements in Optics, Elsevier Edit., Amsterdam (1946)

    Google Scholar 

  10. I.S. Bowen, Spectrographic equipment of the 200-inch Hale telescope, Ap. J. 116, 1–7 (1952)

    ADS  Google Scholar 

  11. I.S. Bowen, Schmidt cameras, in Stars and stellar Systems I – Telescopes, G.P. Kuiper and B.M. Middlehurst edts., Univ. of Chicago Press, Chicago 43–61 (1960)

    Google Scholar 

  12. I.S. Bowen, Astronomical optics, Annual Review of Astronomy and Astrophysics, L. Goldberg ed., 5, 45–70 (1967)

    Google Scholar 

  13. C.R. Burch, On the optical see-saw diagram, MNRAS 102, 159–165 (1942)

    ADS  Google Scholar 

  14. C. Carathéodory, Geometische Optik, Springer edt., Berlin (1937)

    MATH  Google Scholar 

  15. C. Carathéodory, Elementare Theorie des Spiegeltelescops von B. Schmidt, B.G. Teubner edt., Leipzig u. Berlin, 1–36 (1940) and Hamburg. Math. Einzelschr., 28 (1940)

    Google Scholar 

  16. H. Chrétien, Le télescope de Newton et le télescope aplanétique, Rev. d’Opt., 1, 13 et 51 (1922)

    Google Scholar 

  17. H. Chrétien, Le Calcul des Combinaisons Optiques, Sennac Edit., Paris, 346–350 (1958)

    Google Scholar 

  18. A. Couder, Sur un type nouveau de télescope photographique, Comptes Rendus, 183, 1276–1279 (1926)

    Google Scholar 

  19. G. Courtès, New Techniques in Space Astronomy, IAU Conf. Paris, Labuhn & Lüst edt. (1971)

    Google Scholar 

  20. C. Fehrenbach, Principes fondamentaux de classification stellaire, Ann. Astrophys. 10, 257–306 (1947), and 11, 35 (1948)

    ADS  Google Scholar 

  21. C. Fehrenbach, R. Burnage, Vitesses radiales mesurées au prisme objectif de 620-mm de l’Observatoire de Haute Provence, Astron. Astrophys. Suppl. Series, 43, 297 (1981)

    ADS  Google Scholar 

  22. J. Flamand et coll., Diffraction Gratings Ruled and Holographic, Horiba Jobin-Yvon handbook (2003)

    Google Scholar 

  23. K.G. Henize, The role of surveys in space astronomy, Optical Telescopes Technology, NASA-SP-233, US Gov. Print. Off., Washington DC (1970)

    Google Scholar 

  24. D.O. Henrix, W.H. Christie, Some applications of the Schmidt principle in optical design, Sci. Am., 8, 161, 118–123 (1939)

    Google Scholar 

  25. G.A.H. Kellner, American Patent No 969 785, Fig. 3 (1910)

    Google Scholar 

  26. A. Kerber, Central Zeitg. f. Opt. and Mech., 8, 157 (1886) (see Chrétien’s book)

    Google Scholar 

  27. J. Kross, in L’oeil du grand Tout, Life story of B. Schmidt from its invention to the Palomar Schmidt, Laffont edt., Paris (1997)

    Google Scholar 

  28. A. Lallemand, N. Duchesne, G. Wlerick, Advance in Electronics and Electron Physics, 12, 5 (1960)

    Google Scholar 

  29. G.R. Lemaitre, Reflective Schmidt anastigmat telescopes and pseudo-flat made by elasticity, J. Opt. Soc. Am., 66(12), 1334–1340 (1976)

    ADS  Google Scholar 

  30. G.R. Lemaitre, J. Flamand, Spectrographic development of diffraction gratings aspherized by elastic relaxation, Astron. Astrophys., 59(2), 249–253 (1977)

    ADS  Google Scholar 

  31. G.R Lemaitre, Sur la résolution des télescopes de Schmidt de type catoptrique, Comptes Rendus Acad. Sc., 288 B, 297 (1979)

    ADS  Google Scholar 

  32. G.R. Lemaitre, Asphérisation par relaxation élastique de miroirs astronomiques dont le contour circulaire ou elliptique est encastré ou semi-encastré, Comptes Rendus, 290 B, 171 (1980)

    ADS  Google Scholar 

  33. G.R. Lemaitre, Combinaisons optiques à réseaux asphériques: Le spectrographe UV Prime Focus CFHT, Astron. Astrophys. Letters, 103(2), L14–L16 (1981)

    ADS  Google Scholar 

  34. G.R. Lemaitre, Optical design with the Schmidt concept, Astronomy with Schmidt Type Telescopes, IAU Coll. Proc., M. Capaccioli edt., Asiago, Reidel publ., 533–548 (1984)

    Google Scholar 

  35. G.R. Lemaitre, L. Vigroux, All-reflective aspherized grating spectrographs at the prime focus of the CFHT, Instrumentation for Ground-based Astronomy, L.B. Robinson ed., Springer-Verlag, New York, 275–295 (1987)

    Google Scholar 

  36. G.R. Lemaitre, D. Kohler, Spectrographes à réseaux asphériques par réflexion: Les Marlys des observatoires de Haute-Provence et de Nanjing, Comptes Rendus Acad. Sc., 308 II, 381–387 (1989)

    ADS  Google Scholar 

  37. G.R. Lemaitre, D. Kohler, D. Lacroix, J.-P. Meunier, A. Vin, All reflective aspherized grating spectrographs for Haute-Provence and Nanjing observatories: Marlys and Carelec, Astron. Astrophys. 228, 546–558 (1990)

    ADS  Google Scholar 

  38. G.R. Lemaitre, E.H. Richardson, Ground-based and orbital off-axis aspherized grating imagerspectrographs: ISARD/Pic-du-Midi and OSIRIS/Odin-Orbiter, Optical Astronomical Instrumentation, SPIE Proc., 3355, 682–695 (1998)

    Google Scholar 

  39. E.H. Linfoot, The optics of the Schmidt camera, M.N.R.A.S. 109, 279–297 (1949)

    ADS  MATH  Google Scholar 

  40. E.H. Linfoot, E. Wolf, On the corrector plates of Schmidt cameras, J. Opt. Soc. Am. 39, 752 (1949)

    ADS  Google Scholar 

  41. E.H. Linfoot, Two-mirror systems, Recent Advances in Optics, Clarendon edt., Oxford, 277, Chap. 3, 176–183 (1955)

    Google Scholar 

  42. E.G. Loewen, D. Maystre, R.C. McPhedran, Correlation between efficiency of diffraction gratings and theoretical calculations over a wide range, Japan J. Appl. Phys., 141, 143–152 (1975)

    ADS  Google Scholar 

  43. E.G. Loewen, M. Nevière, D. Maystre, Grating efficiency theory as it applies to blazed and holographic gratings, Appl. Opt., 16(10), 2711–2721 (1977)

    ADS  Google Scholar 

  44. D. Lynden-Bell, Exact optics: A unification of optical telescope design, MNRAS, 334, 4, 787–796 (2002)

    ADS  Google Scholar 

  45. D. Maksutov, New catadioptric menicus systems, J. Opt. Soc. Am., 34, 270 (1944)

    ADS  Google Scholar 

  46. A. Maréchal, G.W. Stroke, Sur l’origine des effets de polarisation et de diffraction dans les réseaux optiques, Comptes Rendus Acad. Sc., 248, 2042–2044 (1959)

    Google Scholar 

  47. N.U. Mayall, Bernhard Schmidt and his coma-free reflector, PASP 58, 282–290 (1946)

    ADS  Google Scholar 

  48. D. Maystre, R. Petit, Détermination du champ diffracté par un réseau holographique, Optics Communications, 2(7), 309–311 (1970)

    ADS  Google Scholar 

  49. D. Maystre, R. Petit, Sur l’efficacité du réseau échelette, Nouv. Rev. Opt. Appliquée, 2(2), 115–120 (1971)

    ADS  Google Scholar 

  50. D. Maystre, Rigorous vector theories of diffraction gratings, in Progress in Optics XXI, E. Wolf edt., Elsevier Sciences publ. (1984)

    Google Scholar 

  51. R.C. McPhedran, D. Maystre, A detailed theoretical study of the anomalies of a sinusoidal diffraction grating, Optica Acta, 21(5), 413–421 1974)

    ADS  Google Scholar 

  52. W.C. Meecham, Variational method for the calculation of the distribution of energy reflected from a periodic surface. I., J. Appl. Phys., 27, 361 (1956)

    ADS  MATH  Google Scholar 

  53. D.R. Montgomery, L.A. Adams, Optics and the Mariner imaging instrument, Appl. Opt., 9, 277 (1970)

    ADS  Google Scholar 

  54. M. Nevière, M. Cadilhac, Opt. Commun., 4, 13 (1971)

    ADS  Google Scholar 

  55. M. Nevière, P. Vincent, R. Petit, Nouv. Rev. Opt. Appliquée, 5(2), 65–67 (1974)

    ADS  Google Scholar 

  56. M. Nevière, D. Maystre, J.-P. Laude, Perfect blazing for transmission gratings, J. Opt. Soc. Am., A-7(9), 1736–1739 (1990)

    ADS  Google Scholar 

  57. J. Pavageau, J. Bousquet, Optica Acta, 17, 469 (1970)

    ADS  Google Scholar 

  58. R. Petit, M. Cadhilac, Sur la diffraction d’une onde plane par un réseau infiniment conducteur, Comptes Rendus Acad. Sc., B-262, 468–471 (1966)

    Google Scholar 

  59. R. Petit, Optica Acta, 14, 3, 301–310 (1967)

    ADS  Google Scholar 

  60. R. Petit, Electromagnetic theory of gratings, in Topics in Current Physics, 22, Springer-Verlag ed. Berlin (1980)

    Google Scholar 

  61. G.M. Popov, New two-mirror systems for astrophysics, Instrumentation in Astronomy, SPIE Proc. 2198, 559–569 (1994)

    Google Scholar 

  62. J.W. Rayleigh (Lord Strutt), On the dynamical theory of gratings, Proc. R. Soc. London, A-79, 349–416 (1907)

    ADS  MATH  Google Scholar 

  63. J.W. Rayleigh (Lord Strutt), Phil. Mag., 14, 60 (1907)

    Google Scholar 

  64. E.H. Richardson, D. Salmon, The CFHT Herzberg spectrograph, CFHT Bull., Hawaii, 13 (1985)

    Google Scholar 

  65. F.E. Ross, The 48-inch Schmidt Telescope, Ap. J., 92, 400–407 (1940)

    ADS  Google Scholar 

  66. B. Schmidt, Original manuscript (1929), conserved by The Academy of Estonia, University of Tallin (and by Erik Schmidt). Several aspherical plate profiles are considered which include a Kerber profile, (1929)

    Google Scholar 

  67. B. Schmidt, Mitteilungen der Hamburger Sternwarte, R. Schorr edt., 10 (1930)

    Google Scholar 

  68. B. Schmidt, A.A. Wachmann, Mitteilungen der Hamburger Sternwarte, R. Schorr edt., 6 and Plate I (1931)

    Google Scholar 

  69. B. Schmidt, Y. Wachmann, Mitteilungen der Hamburger Sternwarte, R. Schorr edt., 11 and Plate I (1932)

    Google Scholar 

  70. B. Schmidt, Ein Lichtstarkes Komafreies Speigelsysten, Central Zeitung für Optik und Mechanik, 52, Heft 2, 25 (1932)

    Google Scholar 

  71. B. Schmidt, Mitteilungen der Hamburger Sternwarte, R. Schorr edt., 10 and Plates I and II (1936)

    Google Scholar 

  72. E. Schmidt, in Optical Illusions, Estonian Academy Publishers (Life story of Bernhard Schmidt), 124–125 (1995)

    Google Scholar 

  73. R. Schorr, Astronomische Nachrichten, Berlin 259, 45 (1936) This review paper on B. Schmidt works was translated into English by N.U. Mayall (see also Wachmann, A.A., Kross, J., Schmidt, E.)

    Google Scholar 

  74. D.J. Schroeder, Astronomical Optics, Academic Press, London (1987)

    Google Scholar 

  75. D.H. Schulte, Auxiliary optical systems for the Kitt Peak Observatory, Appl. Opt., 2(2), 141–151 (1963)

    ADS  Google Scholar 

  76. K. Schwarzschild, Untersuchungen zur geometrischen Optik, I, II, III, Göttinger Abh, Neue Folge, Band IV, No. 1 (1905) This article is a general investigation of aplanatic systems obtained with two centred mirrors.

    Google Scholar 

  77. R.D. Sigler, Compound Schmidt telescope designs with nonzero Petzval curvature, Appl. Opt. 14, 2302–2305 (1975)

    ADS  Google Scholar 

  78. G.W. Stroke, Revue d’Optique, 39, 350 (1960)

    Google Scholar 

  79. B. Stromgren, Das Schmidtsche Spiegelteleskop, Viert. Astron. Gessellsch, Leipzig, 70, 65–86 (1935)

    Google Scholar 

  80. D.-q. Su, C. Cao, M. Liang, Some new ideas of the optical system of large telescopes,Avanced Technology Optical Telecopes III, SPIE Proc. 628, 498–503 (1986)

    ADS  Google Scholar 

  81. D.-q. Su, Researches on Schmidt and achromatic Schmidt telescopes, Acta Astronomica Sinica, 29(4), 384–395 (1988)

    ADS  Google Scholar 

  82. D.-q. Su, X. Cui, Active optics in LAMOST, Chin. J. Astron. Astrophys., 4(1), 1–9 (2004)

    ADS  Google Scholar 

  83. Y. Väisälä, Uber Spiegelteleskope mit grossem Gesichtsfeld, Astr. Nach., 259, 197–204 (1936)

    ADS  Google Scholar 

  84. A.A. Wachmann, From the life of Bernhard Schmidt, Sky and Telescope, November, 4–9 (1955)

    Google Scholar 

  85. A.A. Wachmann, Private communications to Erik Schmidt (1985–90). It appears that B. Schmidt probably did not use the stress polishing technique for making its corrector plate although the plate thickness was thin enough for this to work.

    Google Scholar 

  86. S.-g. Wang, D.-q. Su, Q.-q. Hu, Two telescope configurations for China, Advanced Technology Optical Telescopes IV, SPIE Proc. 2199, 341–351 (1994)

    Google Scholar 

  87. S.-g. Wang, D.-q. Su, Y.-q. Chu, X. Cui, Y.-n. Wang, Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observations – LAMOST, Appl. Opt., 35, 25, 5155–5161 (1996)

    ADS  Google Scholar 

  88. R.N. Wilson, Reflecting Telescope Optics I, Springer-Verlag edt. New York (1996)

    Google Scholar 

  89. R.W. Wood, Phil. Mag., 4, 396 (1902)

    Google Scholar 

  90. J.D. Wray, F.G. O’Callaghan, Folded all-reflective Schmidt, Space Optics, SPIE Proc., Santa Barbara (1969)

    Google Scholar 

  91. J.D. Wray, H.J. Smith, K.G. Henize, G.R. Carruthers, SPIE Proc. 332, 141 (1982)

    ADS  Google Scholar 

  92. F.B. Wright, An aplanatic reflector with a flat field related to the Schmidt telescope, Publ. Astron. Soc. Pac., 47, 300–304 (1935)

    ADS  Google Scholar 

  93. C.G. Wynne, MNRAS, 107, 356 (1947a)

    ADS  Google Scholar 

  94. C.G. Wynne, Chromatic correction of wide-aperture catadioptric systems, Nature, 160, 91 (1947b)

    ADS  Google Scholar 

  95. C.G. Wynne, Two-mirror anastigmats, J. Opt. Soc. Am., 59, 572–580 (1969)

    ADS  Google Scholar 

  96. C.G. Wynne, Shorter than a Schmidt, MNRAS, 180, 485–490 (1977)

    ADS  Google Scholar 

  97. Y.-t. Zhu, G.R. Lemaitre, LAMOST multi-object spectrographs with aspherized gratings, in Instrument Design for Ground-based Telescopes, SPIE Proc. 4841, 1127–1133 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemaitre, G. (2009). Optical Design with the Schmidt Concept – Telescopes and Spectrographs. In: Astronomical Optics and Elasticity Theory. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68905-8_4

Download citation

Publish with us

Policies and ethics