Skip to main content

Dioptrics and Elasticity – Variable Curvature Mirrors (VCMs)

  • Chapter
Astronomical Optics and Elasticity Theory

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1606 Accesses

Abstract

The elastic deformation modes corresponding to the first-order modes of the optical matrix characterizing the wavefront shape are the curvature (Cv 1) and tilt (Tilt 1). These are the two fundamental modes involved in Gaussian optics. Because a tilt is easily obtained by a global rotation of a rigid substrate, this chapter only reduces to mirrors generating a Cv 1 mode. Such variable curvature mirrors (VCM) are also sometimes called zoom mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Beckers, Field of view considerations for telescope arrays, SPIE Proc., 628, 255 (1986)

    Article  ADS  Google Scholar 

  2. J.M. Beckers et al., The VLTI implementation plan, ESO/VLT Report No. 59b (1989)

    Google Scholar 

  3. J.M. Beckers, Interferometric imaging with the VLTI, J. Optics (Paris), 22, 73 (1991)

    Article  ADS  Google Scholar 

  4. R.N. Bracewell, in The Fourier Transform and Its Applications, McGraw-Hill ed., New York (1965)

    Google Scholar 

  5. J.W. Brault, Fourier transform spectroscopy, in High Resolution in Astronomy, 15th Advanced Course, SAAS-FEE, 1–62 (1985)

    Google Scholar 

  6. R. Hanbury Brown, Measurement of stellar diameters, Ann. Rev. Astron. Astrophys., 6, 13–38 (1968)

    Article  ADS  Google Scholar 

  7. P. Casal, C. Fayard, B. Authier, Calculations of the elastic deformations of revolution membranes, Appl. Opt., 20(11), 1983–1989 (1981)

    Article  ADS  Google Scholar 

  8. A.A. Christy, Y. Ozaki, V.G. Gregoriou, in Modern Fourier Transform Infrared Spectroscopy, Elsevier ed., ISBN 0444 500 448, (2001)

    Google Scholar 

  9. P. Connes, Astronomical Fourier spectroscopy, Ann. Rev. Astron. Astrophys., 8, 209–230 (1970)

    Article  ADS  Google Scholar 

  10. P. Connes, G. Michel, Astronomical Fourier spectrometers, Appl. Opt., 14, 9, 2067–2084 (1975)

    Article  ADS  Google Scholar 

  11. S.P. Davis, M.C. Clark, J.W. Brault, in Fourier Transform Spectroscopy, Academic Press, San Diego ISBN 0120 425 106 (2001)

    Google Scholar 

  12. F. Derie, VLTI delay lines: Design, development and performance requirements, in Interferometry in Optical Astronomy, SPIE Proc., 4006, 25–30 (2000)

    Google Scholar 

  13. T. Dohi and T. Suzuki, Appl. Opt., 10, 1137 (1971)

    Article  ADS  Google Scholar 

  14. K. Dohlen, Design of a FTS for environmental surveillance, Doctoral dissertation, University of London (1994)

    Google Scholar 

  15. K. Dohlen, Interferometric spectrometer for liquid mirror survey telescopes, in Optical Telescopes of Today and Tomorrow, SPIE/ESO Proc., 2871,1359–1364 (1997)

    Google Scholar 

  16. J.A. Ewing, The Strength of Materials, Cambridge Univ. Press, 2nd ed., (1906). See also S.P. Timoshenko, Résistance des Matériaux, Dunod edt., Paris, 365–366 (1968)

    Google Scholar 

  17. M. Ferrari, G.R. Lemaitre, Analysis of large deflection zoom mirrors for the ESO VLTI, Astron. Astrophys. 274, 12–18 (1993)

    Google Scholar 

  18. M. Ferrari, Optique active et grandes déformations élastiques, Doctoral dissertation, University Aix-Marseille I (1994)

    Google Scholar 

  19. M. Ferrari, F. Derie, B. Delabre, J.-M. Mariotti, VLTI’s VCMs – Pupil transfer inside the delay line cat’s eye, ESO Report No VLT-TRE-ESO-15220-1509 (1997)

    Google Scholar 

  20. M. Ferrari, Development of variable curvature mirrors for the delay lines of the VLTI, Astron. Astrophys. Suppl. Ser., 128, 221–227 (1998)

    Article  ADS  Google Scholar 

  21. M. Ferrari, G.R. Lemaitre, S. Mazzanti, P. Lanzoni, F. Derie, VLTI pupil transfer: Variable curvature mirrors [10], Final results and performances, in Astronomical Telescopes and Instrumentation, SPIE Proc., 4006, 104–116 (2000)

    Article  ADS  Google Scholar 

  22. M. Ferrari, S. Mazzanti, G.R. Lemaitre, J. Lemerrer, P. Lanzoni, P. Dargent, F. Derie, A. Huxley, A. Wallanders, Variable curvature mirrors - Implementation in the VLTI delay lines for field compensation, in Interferometry for Optical Astronomy II, SPIE Proc., 4838, 1155–1162 (2002)

    Google Scholar 

  23. A. Glindeman et al. The VLT Interferometer, in Interferometry in Optical Astronomy, SPIE Proc., 4006, 2–12 (2000)

    Article  ADS  Google Scholar 

  24. E. Hugot, Optique astronomique et élasticité – Ph. D., Université de Provence – Aix Marseille I, Chap. 4 (2007)

    Google Scholar 

  25. P. Jacquinot, C. Dufour, J. Rech. CNRS, Lab. Bellevue (Paris), 6, 91 (1948)

    Google Scholar 

  26. P. Jacquinot, J. Opt. Soc. Amer., 54, 761 (1954)

    Article  ADS  Google Scholar 

  27. B. Koehler, C. Flebus, VLT auxiliary telescopes, in Interferometry in Optical Astronomy, SPIE Proc., 4006, 13–24 (2000)

    Article  ADS  Google Scholar 

  28. D. Korsch, in Reflective Optics, Academic Press Inc., 173 (1991)

    Google Scholar 

  29. M. Krautter, Aplanatic two-mirror surfaces, in Optical System Design, Analysis, and Production for Advanced Technology Systems, SPIE Proc., 655, 127–137 (1986)

    Google Scholar 

  30. O. von der Lühe, J.M. Beckers, R. Braun, The configuration of the VLTI on the Paranal site, in High Resolution by Interferometry II, ESO Conf. Proc., 959–968 (1991)

    Google Scholar 

  31. O. von der Lühe et al., A new plan for the VLTI, The Messenger, ESO ed., 87, 8–14 (1997)

    Google Scholar 

  32. A. Labeyrie, Stellar interferometry methods, Ann. Rev. Astron. Astrophys., 16, 77–102 (1978)

    Article  ADS  Google Scholar 

  33. A. Labeyrie, Interferometry with arrays of large-aperture ground based telescopes, Proc. KPNO Conf. on Optical and Infrared Telescopes for the 1990s, II, 786–796 (1980)

    Google Scholar 

  34. C. Leinert, U. Graser, MIDI – The Mid-Infrared interferometer instrument for the VLTI, in Astronomical Interferometry, SPIE Proc., 3350, 389–402 (1998)

    Google Scholar 

  35. G.R. Lemaitre, Élasticité et miroirs à focale variable, C. R. Acad. Sc. Paris, 282 B, 87–89 (1976)

    ADS  Google Scholar 

  36. G.R. Lemaitre, French patent No 2343262 (1976), US patent No 4119 366 (1976)

    Google Scholar 

  37. G.R. Lemaitre, S. Mazzanti, M. Ferrari, P. Montiel, P. Lanzoni, Tulip-form variable curvature mirrors, in Astronomical Interferometry, SPIE Proc., 3350, 373–379 (1998)

    Google Scholar 

  38. G.R. Lemaitre, M. Ferrari, S. Mazzanti, P. Lanzoni, P. Joulié, VLTI pupil transfer: Variable curvature mirrors [2], Plasticity, hysteresis and curvature control, in Astronomical Telescopes and Instrumentation, SPIE Proc., 4006, 192–197 (2000)

    Article  ADS  Google Scholar 

  39. G.R. Lemaitre, P. Montiel, P. Joulié, K. Dohlen, P. Lanzoni, Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors, Appl. Opt., 44(34), 7322–7332 (2005)

    Article  ADS  Google Scholar 

  40. J. Lubliner, in Plasticity Theory, MacMillan Publ. ed., New York (1991)

    Google Scholar 

  41. J.-P. Maillard, Seismology with Fourier transform spectrometer, Appl. Opt., 35, 16, 2734–2746 (1996)

    Article  ADS  Google Scholar 

  42. J.-P. Maillard, A super-imaging FTS for the VLTI, in Scientific Drivers for ESO Future VLT/VLTI instrumentation, ESO Conf., 193 (2002)

    Google Scholar 

  43. J.-M. Mariotti et al., The VLTI program: A status report, in Astronomical Interferometry, SPIE Proc., bf 3350, 800–806 (1998)

    Google Scholar 

  44. F. Merkle, Synthetic-aperture imaging with the VLT, Journ. Opt. Soc. Am., A 5(6), 904 (1989)

    Article  ADS  Google Scholar 

  45. M. Mersenne, Traité de l’ Harmonie Universelle, Paris (1636)

    Google Scholar 

  46. M. Mersenne, L’Optique et la Catoptrique, posthume publication, in La Perspective Curieuse by J.-F. Niceron, F. Langlois alias Chartres edt., Paris (1652)

    Google Scholar 

  47. L. Mertz, in Transformation in Optics, John Wiley and Sons ed., New York (1965)

    Google Scholar 

  48. A.A. Michelson, On the application of interference methods to astronomical measurements, Ap. J., 51, 257–262 (1920)

    Article  ADS  Google Scholar 

  49. D. Mourard et al., The GI2T / REGAIN interferometer, in Astronomical Interferometry, SPIE Proc., 3350, 517–525 (1998)

    Google Scholar 

  50. F. Paresce, F. Delplancke, F. Derie, A. Glindemann, A. Richichi, M. Tarrenghi, Scientific objectives of ESO’s PRIMA facility, in Interferometry for Optical Astronomy I, SPIE Proc., 4838, 486–495 (2002)

    Google Scholar 

  51. M. Paul, Systèmes correcteurs pour réflecteurs astronomiques, Rev. Opt., 14(5), 169–202 (1935)

    MATH  Google Scholar 

  52. N.J. Rumsey, A compact three-reflection astronomical camera, in Optical Instruments and Techniques, ICO 8 Meeting, London, Home Dickson edt., Oriel Press Newcastle, 514–520 (1969)

    Google Scholar 

  53. L. Seidel, Astron. Nachr., 43, 289 (1856)

    Article  ADS  Google Scholar 

  54. B.C. Smith, in Fundamentals of Fourier Transform Infrared Spectroscopy, CRC Press, Florida ISBN 0849 324 610, (1996)

    Google Scholar 

  55. E. Stephan, Sur les franges d’interférence observées avec de grands instruments, C. R. Acad. Sc., 76, 1008–1010 (1873)

    Google Scholar 

  56. G.W. Stroke and A.T. Funkhauser, Physics Letters, 16, 272 (1965)

    Article  ADS  Google Scholar 

  57. A.P. Thorne, in Spectrophysics, Chapman and Hall ed., London (1988)

    Google Scholar 

  58. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of plate and shells, McGraw-Hill ed., 396 (1976)

    Google Scholar 

  59. F. Vakili, I. Percheron, Beam combination and coherence tracking with diluted arrays, in High Resolution by Interferometry II, ESO Conf. Proc., 1247–1256 (1991)

    Google Scholar 

  60. A. Valentin, Fourier spectroscopy with a very long optical path length, Spectrochim. Acta, 51-A(7), 1127–1142 (1995)

    Article  Google Scholar 

  61. A. Valentin, A. Henry, The Fourier infrared spectrometer of Laboratoire de Physique Moléculaire et Applications, Paris-Jussieu, Internal report of LPMA/CNRS, Univ. P. & M. Curie, Paris (2002)

    Google Scholar 

  62. R.N. Wilson, Karl Schwarzschild and Telescope Optics, Karl Schwarzschild Lecture given to the German Astronomical Society, Bochum (1993), published in Review of Modern Astronomy, 7, 1 (1994). See also Reflecting Telescope Optics I, Springer edt., 88 (1996)

    Google Scholar 

  63. L. Woltjer et al., Proposal for the construction of the 16-m VLT, ESO/VLT Report no. 57 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemaitre, G. (2009). Dioptrics and Elasticity – Variable Curvature Mirrors (VCMs). In: Astronomical Optics and Elasticity Theory. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68905-8_2

Download citation

Publish with us

Policies and ethics