Skip to main content

Thoracolumbar Spine

  • Chapter
  • First Online:
Measurements in Musculoskeletal Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The spine is a complex anatomical structure, undergoing huge developmental changes from birth to attain skeletal maturity. At birth the spine is predominantly cartilaginous, with 30% ossification. The primary ossification centres in each vertebra expand to demarcate the parallel growth plates, which then contribute to cranio-caudal growth under normal physiological stresses. Interstitial growth in the physes accounts for circumferential growth (Debnath 2010). By 5 years of age, 65% of the spine is ossified, and the spinal canal capacity has reached up to 95% of its final size. The growth velocity is particularly rapid during the first 5 years of life, then slowing towards puberty. From the age of 5 to puberty, the growth of the thoracolumbar spine is in the order of 15 cm, with 2/3 accounted for by the thoracic spine. By age 10, approximately 11 cm of thoracolumbar growth remains for males and 7 cm for females. At the onset of puberty, there is an average of a further 9.5 cm thoracolumbar growth for males and 6.5 cm for females (Bick and Copel 1950). The rate of growth during puberty remains less than the initial growth from birth to age 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 289.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amonoo-Kuofi HS (1991) Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 175:159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amonoo-Kuofi HS, Patel PJ, Fatani JA (1990) Transverse diameter of the lumbar spinal canal in normal adult Saudis. Acta Anat (Basel) 137(2):124–128

    Article  CAS  Google Scholar 

  • Beauchamp M, Labelle H, Grimard G, Stanciu C, Poitras B, Dansereau J (1993) Diurnal variation of cobb angle measurement in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 18(12):1581–1583

    Article  CAS  Google Scholar 

  • Beers G, Carter A (1985) Interobserver discrepancies in distance measurements from lumbar spine CT scans. Am J Roentgenol 144:395–398

    Article  CAS  Google Scholar 

  • Bick EM, Copel JW (1950) Longitudinal growth of the human vertebra: a contribution to human ostegeny. J Bone Jt Surg. 32:803–814

    Article  Google Scholar 

  • Biondi J, Weiner DS, Bethem D, Reed JF III (1985) Correlation of Risser sign and bone age determination in adolescent idiopathic scoliosis. J Pediatr Orthop 5(6):697–701

    Article  CAS  PubMed  Google Scholar 

  • Bitan FD, Veliskakis KP, Campbell BC (2005) Differences in the Risser grading systems in the United States and France. Clin Orthop Relat Res 436:190–195

    Article  Google Scholar 

  • Black D, Cummings S, Stone K, Hudes E, Palermo L, Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892

    Article  CAS  PubMed  Google Scholar 

  • Blondel B, Schwab F, Bess S, Ames C, Mummaneni PV, Hart R et al (2013) Posterior global malalignment after osteotomy for sagittal plane deformity. Spine (Phila Pa 1976) 38(7):E394–E401

    Article  Google Scholar 

  • Boseker EH, Moe JH, Winter RB, Koop SE (2000) Determination of “normal” thoracic kyphosis: a roentgenographic study of 121 “normal” children. J Pediatr Orthop 20(6):796–798

    Article  CAS  PubMed  Google Scholar 

  • Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C et al (2006a) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C et al (2006b) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422

    Article  CAS  PubMed  Google Scholar 

  • Bourassa-Moreau E, Mac-Thiong J, Labelle H (2010) Redefining the technique for the radiologic measurement of slip in spondylolisthesis. Spine (Phila Pa 1976) 35(14):1401–1405

    Article  Google Scholar 

  • Boxall D, Bradford DS, Winter RB, Moe JH (1979) Management of severe spondylolisthesis in children and adolescents. J Bone Joint Surg Am 61(4):479–495

    Article  CAS  PubMed  Google Scholar 

  • Briggs AM, Wrigley TV, Tully EA, Adams PE, Greig AM, Bennell KL (2007) Radiographic measures of thoracic kyphosis in osteoporosis: cobb and vertebral centroid angles. Skelet Radiol 36(8):761–767

    Article  CAS  Google Scholar 

  • Capasso G, Maffulli N, Testa V (1992) Inter- and intratester reliability of radiographic measurements of spondylolisthesis. Acta Orthop Belg 58(2):188–192

    CAS  PubMed  Google Scholar 

  • Cassar-Pullicino VN, Eisenstein SM (2002) Imaging in scoliosis: what, why and how? Clin Radiol 57(7):543–562

    Article  CAS  PubMed  Google Scholar 

  • Castro FP (2003) Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine J 3:180–185

    Article  PubMed  Google Scholar 

  • Cil A, Yazici M, Uzumcugil A, Kandemir U (2004) The evolution of sagittal segmental alignment of the spine during childhood. Spine (Phila Pa 1976) 30(1):93–100

    Article  Google Scholar 

  • Cobb JR (1948) Outline for the study of scoliosis. AAOS Instr Course Lect 5:261–275

    Google Scholar 

  • Dang NR, Moreau MJ, Hill DL, Mahood JK, Raso J (2005) Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the spinal deformity study group? AIS radiographic measurement manual. Spine (Phila Pa 1976) 30(9):1064–1069

    Article  Google Scholar 

  • Debarge R, Demey G, Roussouly P (2011) Sagittal balance analysis after pedicle subtraction osteotomy in ankylosing spondylitis. Eur Spine J 20(Suppl 5):619–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Debnath UK (2010) Current concepts in the management of early-onset idiopathic scoliosis. Ped Health 4:343–354

    Article  Google Scholar 

  • Dumont-Fischer D, Rat A-C, Saidenberg-Kermanac’h N, Laurent S, Cohen R, Boissier M-C (2002) Spinal epidural lipomatosis revealing endogenous Cushing’s syndrome. Jt Bone Spine 69(2):222–225

    Article  Google Scholar 

  • Eisenstein S (1977) The morphometry and pathological anatomy of the lumbar spine in south African negroes and caucasoids with specific reference to spinal stenosis. J Bone Joint Surg Br 59:173–180

    Article  CAS  PubMed  Google Scholar 

  • Everett CR, Patel RK (2007) A systematic literature review of nonsurgical treatment in adult scoliosis. Spine (Phila Pa 1976) 32(19):130–134

    Article  Google Scholar 

  • Farfan HF, Osteria V, Lamy C (1976) The mechanical etiology of spondylolysis and spondylolisthesis. Clin Orthop Relat Res:40–55

    Google Scholar 

  • Fassett DR, Schmidt MH (2004) Spinal epidural lipomatosis: a review of its causes and recommendations for treatment. Neurosurg Focus 16(4):E11

    PubMed  Google Scholar 

  • Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precison measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech 12

    Google Scholar 

  • Frobin W, Brinckmann P, Kramer M, Hartwig E (2001) Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur Radiol:263–269

    Article  CAS  PubMed  Google Scholar 

  • Fukusaki M, Kobayashi I, Hara T, Sumikawa K (1998) Symptoms of spinal stenosis do not improve after epidural steroid injection. Clin J Pain 14(2):148–151

    Article  CAS  PubMed  Google Scholar 

  • Giglio CA, Volpon JB (2007) Development and evaluation of thoracic kyphosis and lumbar lordosis during growth. J Child Orthop 1(3):187–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976) 30(6):682–688

    Article  Google Scholar 

  • Göçen S, Havitçioglu H (2001) Effect of rotation on frontal plane deformity in idiopathic scoliosis. Orthopedics 24(3):265–268

    PubMed  Google Scholar 

  • Greendale GA, Nili NS, Huang M-H, Seeger L, Karlamangla AS (2011) The reliability and validity of three non-radiological measures of thoracic kyphosis and their relations to the standing radiological Cobb angle. Osteoporos Int 22(6):1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Gstoettner M, Sekyra K, Walochnik N, Winter P, Wachter R, Bach CM (2007) Inter- and intraobserver reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J 16(10):1587–1592

    Article  PubMed  PubMed Central  Google Scholar 

  • Guen YL, Joon WL, Hee SC, Kyoung-Jin O, Heung SK (2011) A new grading system of lumbar central canal stenosis on MRI: an easy and reliable method. Skelet Radiol 40:1033–1039

    Article  Google Scholar 

  • Guigui P, Levassor N, Rillardon L, Wodecki P, Cardinne L (2003) Physiological value of pelvic and spinal parameters of sagittal balance: analysis of 250 healthy volunteers. Rev Chir Orthop Reparatrice Appar Mot 89:496–506

    CAS  PubMed  Google Scholar 

  • Gupta MC, Wijesekera S, Sossan A, Martin L, Vogel LC, Boakes JL et al (2007) Reliability of radiographic parameters in neuromuscular scoliosis. Spine (Phila Pa 1976) 32(6):691–695

    Article  Google Scholar 

  • Harroud A, Labelle H, Joncas J, Mac-Thiong J-M (2013) Global sagittal alignment and health-related quality of life in lumbosacral spondylolisthesis. Eur Spine J 22(4):849–856

    Article  PubMed  Google Scholar 

  • Herzog RJ, Kaiser JA, Saal JA, Saal JS (1991) The importance of posterior epidural fat pad in lumbar central canal stenosis. Spine (Phila Pa 1976) 16(6 Suppl):S227–S233

    Article  CAS  Google Scholar 

  • Hinck V, Clark W, Hopkins C (1966) Normal interpediculate distances (minimum and maximum) in children and adults. Am J Roentgenol 97:141–153

    Article  CAS  Google Scholar 

  • Hong JY, Suh SW, Modi HN, Hur CY, Song HR, Park JH (2010) Reliability analysis for radiographic measures of lumbar lordosis in adult scoliosis: a case-control study comparing 6 methods. Eur Spine J 19(9):1551–1557

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoppenfeld S, Lonner B, Murthy V, Gu Y (2004) The rib epiphysis and other growth centers as indicators of the end of spinal growth. Spine (Phila Pa 1976) 29(1):47–50

    Article  Google Scholar 

  • http://etext.srs.org/

  • Inoue H, Ohmori K, Miyasaka K, Hosoe H (1999) Radiographic evaluation of the lumbosacral disc height. Skelet Radiol 28(11):638–643

    Article  CAS  Google Scholar 

  • Jackson RP, Kanemura T, Kawakami N, Hales C (2000a) Lumbopelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine (Phila Pa 1976) 25:575–586

    Article  CAS  Google Scholar 

  • Jackson RP, Kanemura T, Kawakami N, Hales C (2000b) Lumbopelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine (Phila Pa 1976) 25(5):575–586

    Article  CAS  Google Scholar 

  • Jacquot F, Charpentier A, Khelifi S, Gastambide D, Rigal R, Sautet A (2012) Measuring the cobb angle with the iPhone in kyphoses: a reliability study. Int Orthop 36(8):1655–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong S-T, Song H-R, Keny SM, Telang SS, Suh S-W, Hong S-J (2006) MRI study of the lumbar spine in achondroplasia. A morphometric analysis for the evaluation of stenosis of the canal. J Bone Joint Surg Br 88(9):1192–1196

    Article  PubMed  Google Scholar 

  • Kalichman L, Cole R, Kim DH, Li L, Suri P, Guermazi A et al (2009) Spinal stenosis prevalence and association with symptoms: the Framingham study. Spine J 9(7):545–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Keenan BE, Izatt MT, Askin GN, Labrom RD, Pearcy MJ, Adam CJ (2014) Supine to standing cobb angle change in idiopathic scoliosis: the effect of endplate pre-selection. Scoliosis 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Koc Z, Ozcakir S, Sivrioglu K, Gurbet A, Kucukoglu S (2009) Effectiveness of physical therapy and epidural steroid injections in lumbar spinal stenosis. Spine (Phila Pa 1976) 34:985–989

    Article  Google Scholar 

  • Korovessis P, Piperos G, Sidiropoulos P, Dimas A (1994) Adult idiopathic lumbar scoliosis. A formula for prediction of progression and review of the literature. Spine (Phila Pa 1976) 19(17):1926–1932

    Article  CAS  Google Scholar 

  • Kuittinen P, Sipola P, Saari T, Aalto TJ, Sinikallio S, Savolainen S et al (2014) Visually assessed severity of lumbar spinal canal stenosis is paradoxically associated with leg pain and objective walking ability. BMC Musculoskelet Disord 15:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuklo TR, Potter BK, O’Brien MF, Schroeder TM, Lenke LG, Polly DW (2005) Reliability analysis for digital adolescent idiopathic scoliosis measurements. J Spinal Disord Tech 18:152–159

    Article  PubMed  Google Scholar 

  • Kumar K, Nath RK, Nair CP, Tchang SP (1996) Symptomatic epidural lipomatosis secondary to obesity. Case report J Neurosurg 85(2):348–350

    CAS  PubMed  Google Scholar 

  • Labelle H, Mac-Thiong J-M, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J 20(Suppl 5):641–646

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen J (1981) The lumbar spinal canal in children. Part II: the interpedicular distance and its relation to the sagittal diameter and transverse pedicular width. Eur J Radiol:312–321

    Google Scholar 

  • Lau EM, Chan HH, Woo J, Lin F, Black D, Nevitt M et al (1996) Normal ranges for vertebral height ratios and prevalence of vertebral fracture in Hong Kong Chinese: a comparison with American Caucasians. J Bone Miner Res 11:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Legaye J (2011) Analysis of the dynamic sagittal balance of the lumbo-pelvi-femoral complex. Biomech Appl. (Figure 1): ISBN 978-953-307-969-1

    Google Scholar 

  • Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisai P, Doria C, Crissantu L, Meloni GB, Conti M, Achene A (2001) Cauda equina syndrome secondary to idiopathic spinal epidural lipomatosis. Spine (Phila Pa 1976) 26(3):307–309

    Article  CAS  Google Scholar 

  • Luoma K, Vehmas T, Riihimäki H, Raininko R (2001) Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine (Phila Pa 1976) 26(6):680–686

    Article  CAS  Google Scholar 

  • Mac-Thiong J-M, Labelle H, Parent S, Poitras B, Jodoin A, Ouellet J et al (2007) Assessment of sacral doming in lumbosacral spondylolisthesis. Spine (Phila Pa 1976) 32:1888–1895

    Article  Google Scholar 

  • Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine (Phila Pa 1976) 35(22):E1193–E1198

    Article  Google Scholar 

  • Malfair D, Flemming AK, Dvorak MF, Munk PL, Vertinsky AT, Heran MK et al (2010) Radiographic evaluation of scoliosis: review. Am J Roentgenol 194:S8–22

    Article  Google Scholar 

  • Mamisch N, Brumann M, Hodler J, Held U, Brunner F, Steurer J (2012) Radiologic criteria for the diagnosis of spinal stenosis. Radiology 264(1):174–179

    Article  PubMed  Google Scholar 

  • McCarty ME, Mehlman CT, Tamai J, Do TT, Crawford AH, Klein G (2009) Spondylolisthesis: intraobserver and interobserver reliability with regard to the measurement of slip percentage. J Pediatr Orthop 29(7):755–759

    Article  PubMed  Google Scholar 

  • Mehta H (1968) The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J Bone Jt Surg 54B(2):230–244

    Article  Google Scholar 

  • Meyerding HW (1931) Spondylolisthesis. J Bone Jt Surg 13(1):39–48

    Google Scholar 

  • Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH (1990) Measurement of the cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 72(3):320–327

    Article  CAS  PubMed  Google Scholar 

  • Nash C, Moe J (1969) A study of vertebral rotation. J Bone Jt Surg. 2:223–229

    Article  Google Scholar 

  • Niggemann P, Kuchta J, Grosskurth D, Beyer HK, Hoeffer J, Delank KS (2012) Spondylolysis and isthmic spondylolisthesis: impact of vertebral hypoplasia on the use of the Meyerding classification. Br J Radiol 85(1012):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North American Spine Society (2011) Evidence-based clinical guidelines for multidisciplinary spine care diagnosis and treatment of degenerative lumbar spinal stenosis. https://www.spine.org/Portals/0/Documents/ResearchClinicalCare/Guidelines/LumbarStenosis.pdf

  • O’Neill TW, Varlow J, Felsenberg D, Johnell O, Weber K, Marchant F et al (1994) Variation in vertebral height ratios in population studies. European vertebral osteoporosis study group. J Bone Miner Res 9:1895–1907

    Article  PubMed  Google Scholar 

  • Oei L, Rivadeneira F, Ly F, Breda SJ, Zillikens MC, Hofman A et al (2013) Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings. Eur Radiol 23:476–486

    Article  PubMed  Google Scholar 

  • Pfirrmann CW, Metzdorf A, Elfering A, Hodler J, Boos N (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Orthop Res 24(5):1086–1094

    Article  PubMed  Google Scholar 

  • Ploumis A, Transfeldt EE, Gilbert TJ, Mehbod AA, Dykes DC, Perra JE (2006) Degenerative lumbar scoliosis: radiographic correlation of lateral rotatory olisthesis with neural canal dimensions. Spine (Phila Pa 1976) 31(20):2353–2358

    Article  Google Scholar 

  • Quint DJ, Boulos RS, Sanders WP, Mehta BA, Patel SC, Tiel RL (1988) Epidural lipomatosis. Radiology 169(2):485–490

    Article  CAS  PubMed  Google Scholar 

  • Rajput D, Srivastava AK, Kumar R (2010) Spinal epidural lipomatosis: an unusual cause of relapsing and remitting paraparesis. J Pediatr Neurosci India: Medknow Publications 5(2):150–152

    Article  Google Scholar 

  • Reem J, Carney J, Stanley M, Cassidy J (2009) Risser sign inter-rater and intra-rater agreement: is the Risser sign reliable? Skelet Radiol 38(4):371–375

    Article  Google Scholar 

  • Risser JC (1958) The iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop 11:111–119

    CAS  PubMed  Google Scholar 

  • Roberts N, Gratin C, Whitehouse GH (1997) MRI analysis of lumbar intervertebral disc height in young and older populations. J Magn Reson Imaging 7:880–886

    Article  CAS  PubMed  Google Scholar 

  • Robertson SC, Traynelis VC, Follett KA, Menezes AH (1997) Idiopathic spinal epidural lipomatosis. [review] [41 refs]. Neurosurgery 41(1):68–74

    Article  CAS  PubMed  Google Scholar 

  • Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20(Suppl 5):609–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussouly P, Berthonnaud E, Dimnet J (2003) Geometrical and mechanical analysis of lumbar lordosis in an asymptomatic population: proposed classification. Rev Chir Orthop Reparatrice Appar Mot 89:632–639

    CAS  PubMed  Google Scholar 

  • Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346–353

    Article  Google Scholar 

  • Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976) 31(11):E320–E325

    Article  Google Scholar 

  • Schwarz G (1956) The width of the spinal canal in the growing vertebra with special reference to the sacrum. Am J Roentgenol 76(3):476–481

    CAS  Google Scholar 

  • Shao Z, Rompe G, Schiltenwolf M (2002) Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine (Phila Pa 1976) 27(3):263–268

    Article  Google Scholar 

  • Shaw M, Adam CJ, Izatt MT, Licina P, Askin GN (2012) Use of the iPhone for cobb angle measurement in scoliosis. Eur Spine J 21(6):1062–1068

    Article  PubMed  Google Scholar 

  • Shefi S, Soudack M, Konen E, Been E (2013) Development of the lumbar lordotic curvature in children from age 2 to 20 years. Spine (Phila Pa 1976) 38(10):E602–E608

    Article  Google Scholar 

  • Steurer J, Roner S, Gnannt R, Hodler J (2011) Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord 12(1):175

    Article  PubMed  PubMed Central  Google Scholar 

  • Taillard W (1954) Spondylolisthesis in children and adolescents. Acta Orthop Scand 24(2):115–144

    Article  CAS  PubMed  Google Scholar 

  • Tibrewal SB, Pearcy MJ (1985) Lumbar intervertebral disc heights in normal subjects and patients with disc herniation. Spine (Phila Pa 1976) 10:452–454

    Article  CAS  Google Scholar 

  • Tokala DP, Mukerjee KB, Grevitt MP, Freeman BJC, Webb JK (2005) Factors affecting correction of sagittal balance in ankylosing spondylitis. J Bone Jt Surgery Br 87-B(SUPP III):236

    Google Scholar 

  • Ullrich CG, Binet EF, Sanecki MG, Kieffer SA (1980) Quantitative assessment of the lumbar spinal canal by computed tomography. Radiology 134:137–143

    Article  CAS  PubMed  Google Scholar 

  • Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267

    Article  PubMed  Google Scholar 

  • Wakerley B, Kent L, Jackson M (2011) Progressive epidural lipomatosis with steroid use in severe refractory asthma. J Asthma 48(3):316–318

    Article  PubMed  Google Scholar 

  • Ward CV, Latimer B, Alander DH, Parker J, Ronan JA, Holden AD et al (2007) Radiographic assessment of lumbar facet distance spacing and spondylolysis. Spine (Phila Pa 1976) 32(2):E85–E88

    Article  Google Scholar 

  • Wills BP, Auerbach JD, Zhu X, Caird MS, Horn BD, Flynn JM et al (2007) Comparison of Cobb angle measurement of scoliosis radiographs with preselected end vertebrae: traditional versus digital acquisition. Spine (Phila Pa 1976) 32(1):98–105

    Article  Google Scholar 

  • Wiltse LL, Winter B (1983) Terminology and measurement of spondylolisthesis. J Bone Joint Surg Am 768–772

    Article  CAS  Google Scholar 

  • Wright J, Bell D (1991) Lumbosacral joint angles in children. J Pediatr Orthop 11:748–751

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Liang J, Du Y, Tan X, Xiang X, Wang W et al (2014) Reliability and reproducibility analysis of the cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools. BMC Musculoskelet Disord 15:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Bhandarkar A, Suh S, Hong J, Hwang J, Ham C (2014) Evaluation of accuracy of plain radiography in determining the Risser stage and identification of common sources of errors. J Orthop Surg Res 9(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Zehnder SW, Ward CV, Crow AJ, Alander D, Latimer B (2009) Radiographic assessment of lumbar facet distance spacing and pediatric spondylolysis. Spine (Phila Pa 1976) 34(3):285–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Llopis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Winn, N., Llopis, E., Cassar-Pullicino, V.N. (2020). Thoracolumbar Spine. In: Cassar-Pullicino, V., Davies, A. (eds) Measurements in Musculoskeletal Radiology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68897-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68897-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43853-3

  • Online ISBN: 978-3-540-68897-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics