Skip to main content

Ultrasound

  • Chapter
  • First Online:
Measurements in Musculoskeletal Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1568 Accesses

Abstract

Measurement is one of the key parameters of US examination and represents an essential part for a correct interpretation of ultrasound (US) images and for distinguishing normal from pathologic conditions. In the musculoskeletal system, US measurements involve calculation of linear distance, area, or volume. Distance measures are the most commonly used by far. They are usually obtained on the freezed image frame by moving a visible cursor on the screen via a track ball: the process may take a couple of seconds. The precision of distance measurements reached by current technology and high frequency broadband transducers is very high, and, in the best circumstances, spot reflectors measuring 0.1 mm in size can be resolved as separate structures. Area measurements are used in more specific settings. Because most of area measurements relate to round/oval structures, built-in systems that produce an ellipse on the screen can give results quickly by adjusting size and shape on the structure to be evaluated with the track ball. On the other hand, freehand area measurements need a steady hand: it may be difficult to draw on the screen a trace that perfectly overlaps the structure of interest. However, positive and negative errors produced by the caliper spots that deviate from the intended position on either side of the outline, at the end, tend to balance. Automated recognition algorithms have recently been introduced to make precise tracing around a given structure without wasting time. If implemented in the equipment software, volume algorithms usually refer to ellipsoid structures or recall obstetrical shapes. In general, these systems do not perfectly fit for use in the musculoskeletal system, where skeletal muscles have variable conformation. The advent of 3D and 4D ultrasound is opening new perspectives in this field. One of the main drawbacks of linear array transducers is the limited extension of the field of view that makes measurements of elongated structures in the musculoskeletal system impractical. Thus, spatial relationships and sizes in the US images often must be synthesized in the mind of the sonologist from multiple real-time images that display only portions of the relevant anatomy (Lin et al. 1999). With extended field-of-view systems, however, geometric measurements can be obtained effectively from lesions larger than the field of view of the transducer with <5% error (Fig. 1) (Fornage et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 289.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RS, Bell DS, Bamber JC et al (1999) Evaluation of soft-tissue masses using segment color Doppler velocity images; preliminary experience. Am J Roentgenol 172:781–788

    Article  CAS  Google Scholar 

  • Alemán L, Berná JD, Reus M et al (2008) Reproducibility of sonographic measurements of the median nerve. J Ultrasound Med 27:193–197

    Article  PubMed  Google Scholar 

  • Archambault JM, Wiley JP, Bray RC (1998) Can sonography predict the outcome in patients with achillodynia? J Clin Ultrasound 26:335–339

    Article  CAS  PubMed  Google Scholar 

  • Arts IM, Pillen S, Overeem S et al (2007) Rise and fall of skeletal muscle size over the entire life span. Am J Geriatr Soc 55:1150–1152

    Article  Google Scholar 

  • Battiston B, Geuna S, Ferrero M et al (2005) Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 25:258–267

    Article  PubMed  Google Scholar 

  • Beckman R, Visser LH, Wl V (2011) Ultrasonography in ulnar neuropathy at the elbow: a critical review. Muscle Nerve 43:627–635

    Article  Google Scholar 

  • Belkas JS, Munro CA, Shoichetb MS et al (2006) Peripheral nerve regeneration through a synthetic hydrogel nerve tube. Restor Neurol Neurosci 23:19–29

    Google Scholar 

  • Bianchi S, Zwass A, Abdelwahab I (1994) Sonographic evaluation of posterior instability and dislocation of the shoulder: prospective study. J Ultrasound Med 13:389–393

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Martinoli C, Bianchi-Zamorani M et al (2002) Ultrasound of the joints. Eur Radiol 12:56–61

    Article  PubMed  Google Scholar 

  • Bleakney R, Maffulli N (2002) Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fitness 42:120–125

    CAS  PubMed  Google Scholar 

  • Cartwright MS, Passmore LV, Yoon JS et al (2008) Cross-sectional area: reference values for nerve ultrasonography. Muscle Nerve 37:566–571

    Article  PubMed  Google Scholar 

  • Colleran G, Madewell J, Foran P et al (2011) Imaging of soft-tissue and osseous sarcomas of the extremities. Semin Ultrasound CT MR 32:442–455

    Article  PubMed  Google Scholar 

  • Crass JR, Craig EV, Feinberg SB (1987) The hyperextended internal rotation view in rotator cuff ultrasonography. J Clin Ultrasound 15:416–420

    Article  CAS  PubMed  Google Scholar 

  • Crass JR, Craig EV, Feinberg SB (1988) Ultrasonography of rotator cuff tears: a review of 500 diagnostic studies. J Clin Ultrasound 16:313–327

    Article  CAS  PubMed  Google Scholar 

  • De Smet AA, Winter TC, Best TM et al (2002) Dynamic sonography with valgus stress to assess elbow ulnar collateral ligament injury in baseball pitchers. Skelet Radiol 31:671–676

    Article  Google Scholar 

  • De Zordo T, Lill SR, Fink C et al (2009) Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. AJR Am J Roentgenol 193:180–185

    Article  PubMed  Google Scholar 

  • De Zordo T, Cheem R, Smekal V et al (2010) Real-time sonoelastography: findings in patients with symptomatic Achilles tendons and comparison to healthy volunteers. Ultraschall Med 31:394–400

    Article  PubMed  Google Scholar 

  • Delcker A, Walker F, Caress J et al (1999) In vitro measurement of muscle volume with 3-dimensional ultrasound: technical note. Eur J Ultrasound 9:185–190

    Article  CAS  PubMed  Google Scholar 

  • Drakonaki EE, Allen GM, Wilson DJ (2009) Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol 64:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Duncan I, Sullivan P, Lomas F (1999) Sonography in the diagnosis of carpal tunnel syndrome. Am J Roentgenol 173:681–684

    Article  CAS  Google Scholar 

  • Dupont AC, Sauerbrei EE, Fenton PV et al (2001) Real-time sonography to estimate muscle thickness: comparison with MRI and CT. J Clin Ultrasound 29:230–236

    Article  CAS  PubMed  Google Scholar 

  • Esformes JI, Narici MV, Maganaris CN (2002) Measurement of human muscle volume using ultrasonography. Eur J Appl Physiol 87:90–92

    Article  PubMed  Google Scholar 

  • Ferri M, Finlay K, Popowich T et al (2005) Sonography of full-thickness supraspinatus tears: comparison of patient positioning technique with surgical correlation. Am J Roentgenol 184:180–184

    Article  Google Scholar 

  • Fornage BD (1986) Achilles tendon: US examination. Radiology 159:759–764

    Article  CAS  PubMed  Google Scholar 

  • Fornage BD, Touche DH, Segal P et al (1983) Ultrasonography in the evaluation of muscular trauma. J Ultrasound Med 2:549–554

    Article  CAS  PubMed  Google Scholar 

  • Fornage BD, Atkinson EN, Nock LF et al (2000) US with extended field of view: phantom-tested accuracy of distance measurements. Radiology 214:579–584

    Article  CAS  PubMed  Google Scholar 

  • Gay F, Pierucci F, Zimmerman V et al (2012) Contrast-enhanced ultrasonography of peripheral soft-tissue tumors: feasibility study and preliminary results. Diagn Interv Imaging 93:37–46

    Article  CAS  PubMed  Google Scholar 

  • Grassi W, Lamanna G, Farina A et al (1999) Sonographic imaging of normal and osteoarthritic cartilage. Semin Arthritis Rheum 28:398–403

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink P, Fessel DP, Jacobson JA et al (2001) Full- versus partial-thickness Achilles tendon tears: sonographic accuracy and characterization in 26 cases with surgical correlation. Radiology 220:406–412

    Article  CAS  PubMed  Google Scholar 

  • Heers G, Hedtmann A (2005) Correlation of ultrasonographic findings to Tossy's and Rockwood's classification of acromioclavicular joint injuries. Ultrasound Med Biol 31:725–732

    Article  PubMed  Google Scholar 

  • Hobson-Webb LD, Massey JM, Juel VC, Sanders DB (2008) The ultrasonographic wrist-to-forearm median nerve area ratio in carpal tunnel syndrome. Clin Neurophysiol 119:1353–1357

    Article  PubMed  Google Scholar 

  • Hobson-Webb LD, Padua L, Martinoli C (2012) Ultrasonography in the diagnosis of peripheral nerve disease. Expert Opin Med Diagn 6:457–471

    Article  PubMed  Google Scholar 

  • Hoyt K, Kneezel T, Castaneda B, Parker KJ (2008) Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity. Phys Med Biol 7:4063–4080

    Article  Google Scholar 

  • Katayama Y, Montenegro R, Freier T et al (2006) Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts. Biomaterials 27:505–518

    Article  CAS  PubMed  Google Scholar 

  • Klauser AS, Halpern EJ, Zordo D et al (2009) Carpal tunnel syndrome assessment ith US: value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology 250:171–177

    Article  PubMed  Google Scholar 

  • Klauser AS, Faschingbauer R, Jaschke WR (2010) Is sonoelastography of value in assessing tendons? Semin Musculoskeletal Radiol 14:323–333

    Article  Google Scholar 

  • Klauser AS, Halpern EJ, Faschingbauer R et al (2011) Bifid median nerve in carpal tunnel syndrome: assessment with US cross-sectional area measurement. Radiology 259:808–815

    Article  PubMed  Google Scholar 

  • Koivunen-Niemelä T, Parkkola K (1995) Anatomy of the Achilles tendon (tendo calcaneus) with respect to tendon thickness measurements. Surg Radiol Anat 17:263–268

    Article  PubMed  Google Scholar 

  • Kotnis R, Saronjini D, Handley R et al (2006) Dynamic ultrasound as a selection tool for reducing Achilles tendon reruptures. Am J Sports Med 34:1395–1400

    Article  PubMed  Google Scholar 

  • Koury V, Cardinal E (2009) “Tenomalacia”: a new sonographic sign of tendinopathy? Eur Radiol 19:144–146

    Article  Google Scholar 

  • Koury V, Cardinal E, Brassard P (2008) Atrophy and fatty infiltration of the supraspinatus muscle: sonography versus MRI. Am J Roentgenol 190:1105–1111

    Article  Google Scholar 

  • Kumm TR, Szabunio MM (2010) Elastography for the characterization of breast lesions: initial clinical experience. Cancer Control 17:156–161

    Article  PubMed  Google Scholar 

  • Lee CL, Huang MH, Chai CY et al (2008) The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic gradings. Osteoarthr Cartil 16:352–358

    Article  Google Scholar 

  • Lin EC, Middleton WD, Teefey SA (1999) Extended field of view sonography in musculoskeletal imaging. J Ultrasound Med 18:147–152

    Article  CAS  PubMed  Google Scholar 

  • Martinvoli C, Bianchi S, Derchi LE (1999) Tendon and nerve sonography. Rad Clin North Am 37(4):691–711

    Google Scholar 

  • Martinoli C, Bianchi S, Dahmane M et al (2002) Ultrasound of tendons and nerves. Eur Radiol 12:44–55

    Article  PubMed  Google Scholar 

  • Mathiesen O, Konradsen L, Torp-Pedersen S et al (2004) Ultrasonography and articular cartilage defects in the knee: an in vitro evaluation of the accuracy of cartilage thickness and defect size assessment. Knee Surg Sports Traumatol Arthrosc 12:440–443

    Article  PubMed  Google Scholar 

  • McNally EG (2008) Ultrasound of the small joints of the hands and feet: current status. Skelet Radiol 37:99–103

    Article  CAS  Google Scholar 

  • Meyer DC, Hoppeler H, von Rechenberg B et al (2004) A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J Orthop Res 22:1004–1007

    Article  PubMed  Google Scholar 

  • Middleton WD (1992) Ultrasonography of the shoulder. Radiol Clin N Am 30:927–940

    CAS  PubMed  Google Scholar 

  • Naredo E, Acebes C, Möller I et al (2009) Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis 68:1322–1327

    Article  CAS  PubMed  Google Scholar 

  • Narici M, Cerretelli P (1998) Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 5:73–74

    Google Scholar 

  • Nazarian L, McShane JM, Ciccotti MG et al (2003) Dynamic US of the anterior band of the ulnar collateral ligament of the elbow in asymptomatic major league baseball pitchers. Radiology 227:149–154

    Article  PubMed  Google Scholar 

  • O’Connor PJ, Grainger AJ, Morgan SR et al (2004) Ultrasound assessment of tendons in asymotomatic volunteers: a study of reproducibility. Eur Radiol 14:1968–1973

    Article  PubMed  Google Scholar 

  • Østergaard M, Court-Payen M, Gideon P et al (1995) Ultrasonography in arthritis of the knee. A comparison with MR imaging. Acta Radiol 36:19–26

    Article  PubMed  Google Scholar 

  • Padua L, Martinoli C (2008) From square to cube: ultrasound as a natural complement of neurophysiology. Clin Neurophysiol 119:1217–1218

    Article  CAS  PubMed  Google Scholar 

  • Peer S, Bodner G, Meirer R et al (2001) Examination of postoperative peripheral nerve lesions with high-resolution sonography. Am J Roentgenol 177:415–419

    Article  CAS  Google Scholar 

  • Pillen S, Arts IM, Zwarts MJ (2008) Muscle ultrasound in neuromuscular disorders. Muscle Nerve 37:679–693

    Article  PubMed  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2004) Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol 91:116–118

    Article  PubMed  Google Scholar 

  • Robben SGF, Lequin MH, Diepstraten AFM et al (1999) Anterior joint capsule of the normal hip and in children with transient synovitis: US study with anatomic and histologic correlation. Radiology 210:499–507

    Article  CAS  PubMed  Google Scholar 

  • Rohrschneider WK, Fuchs G, Tröger J (1996) Ultrasonographic evaluation of the anterior recess in the normal hip: a prospective study on 166 asymptomatic children. Pediatr Radiol 26:629–634

    Article  CAS  PubMed  Google Scholar 

  • Rutheford OM, Jones DA (1992) Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol Occup Physiol 65:433–437

    Article  Google Scholar 

  • Schmidt WA, Schmidt H, Schicke B et al (2004) Standard reference values for musculoskeletal ultrasonography. Ann Rheum Dis 63:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel K, Hodler J, Meyer DC et al (2005) Fatty atrophy of supraspinatus and infraspinatus muscles: accuracy of US. Radiology 237:584–589

    Article  PubMed  Google Scholar 

  • Szkudlarek M, Narvestad E, Klarlund M et al (2004) Ultrasonography of the metacarpophalangeal joints in rheumatoid arthritis: comparison with magnetic resonance imaging, conventional radiography, and clinical examination. Arthritis Rheum 44:2103–2112

    Article  Google Scholar 

  • Thoirs K, Williams MA, Cert G et al (2008) Ultrasonographic measurements of the ulnar nerve at the elbow. J Ultrasound Med 27:737–743

    Article  PubMed  Google Scholar 

  • Van der Woude HJ, Vanderschueren G (1999) Ultrasound in musculoskeletal tumors with emphasis on its role in tumor follow-up. Radiol Clin N Am 37:753–766

    Article  PubMed  Google Scholar 

  • Walton JM, Roberts N, Whitehouse GH (1997) Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb JM, Bannister GC (1999) Percutaneous repair of the ruptured tendo Achillis. J Bone Joint Surg Br 81:877–880

    Article  CAS  PubMed  Google Scholar 

  • Yesildag A, Kutluhan S, Sengul N et al (2004) The role of ultasonographic measurements of the median nerve in the diagnomsis of carpal tunnel syndrome. Clin Radiol 59:910–915

    Article  CAS  PubMed  Google Scholar 

  • Ying M, Yeung E, Brian L et al (2003) Sonographic evaluation of the size of Achilles tendon: the effect of exercise and dominance of the ankle. Ultrasound Med Biol 29:637–642

    Article  PubMed  Google Scholar 

  • Yoon JS, Kim BJ, Kim SJ et al (2007) Ultrasonographic measurements in cubital tunnel syndrome. Muscle Nerve 36:853–855

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Martinoli M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinoli, C., Attieh, A., Tagliafico, A. (2020). Ultrasound. In: Cassar-Pullicino, V., Davies, A. (eds) Measurements in Musculoskeletal Radiology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68897-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68897-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43853-3

  • Online ISBN: 978-3-540-68897-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics