Skip to main content

Tight Bounds for Permutation Flow Shop Scheduling

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5035))

Abstract

In flow shop scheduling there are m machines and n jobs, such that every job has to be processed on the machines in the fixed order 1,...,m. In the permutation flow shop problem, it is also required that each machine processes the set of all jobs in the same order. Formally, given n jobs along with their processing times on each machine, the goal is to compute a single permutation of the jobs σ:[n]→[n], that minimizes the maximum job completion time (makespan) of the schedule resulting from σ. The previously best known approximation guarantee for this problem was \(O(\sqrt{m\log m})\) [29]. In this paper, we obtain an improved \(O(\min\{\sqrt{m},\sqrt{n}\})\) approximation algorithm for the permutation flow shop scheduling problem, by finding a connection between the scheduling problem and the longest increasing subsequence problem. Our approximation ratio is relative to the lower bounds of maximum job length and maximum machine load, and is the best possible such result. This also resolves an open question from [21], by algorithmically matching the gap between permutation and non-permutation schedules. We also consider the weighted completion time objective for the permutation flow shop scheduling problem. Using a natural linear programming relaxation, and our algorithm for the makespan objective, we obtain an \(O(\min\{\sqrt{m},\sqrt{n}\})\) approximation algorithm for minimizing the total weighted completion time, improving upon the previously best known guarantee of εm for any constant ε> 0 [30]. We give a matching lower bound on the integrality gap of our linear programming relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved Scheduling Algorithms for Minsum Criteria. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)

    Google Scholar 

  2. Chazelle, B.: The discrepancy method. Randomness and complexity. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of combinatorial optimization, vol. 3, pp. 21–169. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  4. Conway, R., Maxwell, W., Miller, L.: Theory of scheduling. Addison-Wesley Publishing Co., Reading, Mass, London, Don Mills, Ont. (1967)

    MATH  Google Scholar 

  5. Czumaj, A., Scheideler, C.: A New Algorithmic Approach to the General Lovasz Local Lemma with Applications to Schedulung and Satisfiability Problems. In: Proc. 32 ACM Symposium on Theory of Computing (STOC) (2000)

    Google Scholar 

  6. Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. In: STOC 1998. Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM Press, New York (1998)

    Chapter  Google Scholar 

  7. Fishkin, A., Jansen, K., Mastrolilli, M.: On minimizing average weighted completion time: a PTAS for the job shop problem with release dates. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 319–328. Springer, Heidelberg (2003)

    Google Scholar 

  8. Framinan, J., Gupta, J., Leisten, R.: A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society 55, 1243–1255 (2004)

    Article  MATH  Google Scholar 

  9. Frieze, A.: On the length of the longest monotone subsequence of a random permutation. The Annals of Applied Probability 1(2), 301–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average Completion Time: Off–line and On–line Algorithms. In: Proceedings of the 7th Symposium on Discrete Algorithms, pp. 142–151 (1996)

    Google Scholar 

  11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average Completion Time: Off–Line and On–Line Approximation Algorithms. Mathematics of Operations Research 22, 513–544 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jansen, K., Solis-Oba, R., Sviridenko, M.: Makespan Minimization in Job Shops: a Linear Time Approximation Scheme. SIAM Journal of Discrete Mathematics 16, 288–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, S.: Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quartely 1, 61–68 (1954)

    Article  Google Scholar 

  14. Hofri, M.: Probabilistic Analisys of Algorithms: On Computing Metodologies for Computing Algorithms Performance Evaluation. Springer, Heidelberg (1987)

    Google Scholar 

  15. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. In: Handbook in Operations Research and Management Science, vol. 4, pp. 445–522. North-Holland, Amsterdam (1993)

    Google Scholar 

  16. Logan, B.F., Shepp, L.A.: A Variational Problem for Random Young Tableaux. Advances in Mathematics 26, 206–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine n-job flow-shop sequencing problem. OMEGA International J. Management Sci. 11, 91–95 (1983)

    Article  Google Scholar 

  18. Nowicki, E., Smutnicki, C.: New results in the worst-case analysis for flow-shop scheduling. Discrete Appl. Math. 46, 21–41 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nowicki, E., Smutnicki, C.: Worst-case analysis of an approximation algorithm for flow-shop scheduling. Oper. Res. Lett. 8, 171–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nowicki, E., Smutnicki, C.: Worst-case analysis of Dannenbring’s algorithm for flow-shop scheduling. Oper. Res. Lett. 10, 473–480 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Potts, C., Shmoys, D., Williamson, D.: Permutation vs. nonpermutation flow shop schedules. Operations Research Letters 10, 281–284 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Programming Ser. A 58(2), 263–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Queyranne, M., Sviridenko, M.: Approximation Algorithms for Shop Scheduling Problems with Minsum Objective. Journal of Scheduling 5, 287–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. System Sci. 37, 130–143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Röck, H., Schmidt, G.: Machine aggregation heuristics in shop-scheduling. Methods of Operations Research 45, 303–314 (1983)

    MATH  Google Scholar 

  26. Sevast’janov, S.: On some geometric methods in scheduling theory: a survey. Discrete Applied Mathematics 55, 59–82 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. In: Algorithms and Combinatorics, vol. B 24. Springer, Berlin (2003)

    Google Scholar 

  28. Shmoys, D., Stein, C., Wein, J.: Improved Approximation Algorithms for Shop Scheduling Problems. SIAM Journal on Computing 23(3), 617–632 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sviridenko, M.: A Note on Permutation Flow Shop Problem. Annals of Operations Research 129, 247–252 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smutnicki, C.: Some results of the worst-case analysis for flow shop scheduling. European Journal of Operational Research 109, 66–87 (1998)

    Article  MATH  Google Scholar 

  31. Vershik, A.M., Kerov, S.V.: Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233, 1024–1027 (1977)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Lodi Alessandro Panconesi Giovanni Rinaldi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagarajan, V., Sviridenko, M. (2008). Tight Bounds for Permutation Flow Shop Scheduling. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2008. Lecture Notes in Computer Science, vol 5035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68891-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68891-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68886-0

  • Online ISBN: 978-3-540-68891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics