The Distributed Wireless Gathering Problem

  • Vincenzo Bonifaci
  • Peter Korteweg
  • Alberto Marchetti-Spaccamela
  • Leen Stougie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)


We address the problem of data gathering in a wireless network using multihop communication; our main goal is the analysis of simple algorithms suitable for implementation in realistic scenarios. We study the performance of distributed algorithms, which do not use any form of local coordination, and we focus on the objective of minimizing average flow times of data packets. We prove a lower bound of Ω(logm) on the competitive ratio of any distributed algorithm minimizing the maximum flow time, where m is the number of packets. Next, we consider a distributed algorithm which sends packets over shortest paths, and we use resource augmentation to analyze its performance when the objective is to minimize the average flow time. If interferences are modeled as in Bar-Yehuda et al. (J. of Computer and Systems Science, 1992) we prove that the algorithm is (1 + ε)-competitive, when the algorithm sends packets a factor O(log(δ/ε) logΔ) faster than the optimal offline solution; here δ is the diameter of the network and Δ the maximum degree. We finally extend this result to a more complex interference model.


Sensor Network Wireless Sensor Network Completion Time Data Packet Competitive Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg, J.M.: Universal-stability results and performance bounds for greedy contention resolution protocols. Journal of the ACM 48(1), 39–69 (2001)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multihop radio networks: an exponential gap between determinism and randomization. Journal of Computer and System Sciences 45(1), 104–126 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio networks. SIAM Journal on Computing 22(4), 875–887 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bermond, J., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness and approximation of gathering in static radio networks. Parallel Processing Letters 16(2), 165–183 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. In: Proc. of the 10th Scandinavian Workshop on Algorithms and Theory, pp. 328–338 (2006)Google Scholar
  7. 7.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimzing flow time in the wireless gathering problem. In: Proc. of the 25th Int. Symp. on Theoretical Aspects of Computer Science (2008)Google Scholar
  8. 8.
    Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. Journal of the ACM 48(1), 13–38 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Florens, F.C., McEliece, R.M.: Lower bounds on data collection time in sensory networks. IEEE J. on Selected Areas in Communications 22, 1110 (2004)CrossRefGoogle Scholar
  10. 10.
    Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: Proc. of the ACM Symp. on the Theory of Computing, pp. 363–372 (2004)Google Scholar
  11. 11.
    Håstad, J., Leighton, F.T., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM Journal on Computing 25(4) (1996)Google Scholar
  12. 12.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kar, K., Kodialam, M.S., Lakshman, T.V., Tassiulas, L.: Routing for network capacity maximization in energy-constrained ad-hoc networks. In: Proc. IEEE INFOCOM (2003)Google Scholar
  14. 14.
    Kodialam, M.S., Nandagopal, T.: Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem. In: Proc. MOBICOM, pp. 42–54 (2003)Google Scholar
  15. 15.
    Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-scheduling in wireless ad-hoc networks. In: Proc. of the ACM-SIAM Symp. on Discrete Algorithms, pp. 1021–1030 (2004)Google Scholar
  16. 16.
    Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Provable algorithms for joint optimization of transport, routing and MAC layers in wireless ad hoc networks. In: Proc. Dial-M/POMC (2007)Google Scholar
  17. 17.
    Lu, G., Krishnamachari, B., Raghavendra, C.S.: An adaptive energy-efficient and low-latency mac for data gathering in wireless sensor networks. In: Proc. IEEE IPDPS (2004)Google Scholar
  18. 18.
    Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: Proc. IEEE INFOCOM (2006)Google Scholar
  19. 19.
    Pahlavan, K., Levesque, A.H.: Wireless information networks. Wiley, Chichester (1995)Google Scholar
  20. 20.
    Perkins, C.E.: Ad hoc networking. Addison-Wesley, Reading (2001)Google Scholar
  21. 21.
    Polastre, J., Hill, J.L., Culler, D.E.: Versatile low power media access for wireless sensor networks. In: Proc. SenSys., pp. 95–107 (2004)Google Scholar
  22. 22.
    Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. IEEE IPDPS (2006)Google Scholar
  23. 23.
    Xiao, L., Johansson, M., Boyd, S.P.: Simultaneous routing and resource allocation via dual decomposition. IEEE Transactions on Communications 52(7), 1136–1144 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vincenzo Bonifaci
    • 1
    • 3
  • Peter Korteweg
    • 2
  • Alberto Marchetti-Spaccamela
    • 3
  • Leen Stougie
    • 2
    • 4
  1. 1.Università degli Studi dell’AquilaItaly
  2. 2.Eindhoven University of TechnologyThe Netherlands
  3. 3.Sapienza Università di RomaItaly
  4. 4.CWIAmsterdamThe Netherlands

Personalised recommendations