Advertisement

Speed Scaling with a Solar Cell

  • Nikhil Bansal
  • Ho-Leung Chan
  • Kirk Pruhs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

We consider the speed scaling problem of scheduling a collection of tasks with release times, deadlines, and sizes so as to minimize the energy recharge rate. This is the first theoretical investigation of speed scaling for devices with a regenerative energy source. We show that the problem can be expressed as a polynomial sized convex program. We that using the KKT conditions, one can obtain an efficient algorithm to verify the optimality of a schedule. We show that the energy optimal YDS schedule, is 2-approximate with respect to the recharge rate. We show that the online algorithm BKP is O(1)-competitive with respect to recharge rate.

Keywords

Solar Cell Release Time Competitive Ratio Recharge Rate Convex Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–623. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc. ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 289–298 (2007)Google Scholar
  4. 4.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1) (2007)Google Scholar
  5. 5.
    Bansal, N., Bunde, D., Chan, H.-L., Pruhs, K.: Average rate speed scaling. In: LATIN 2008 (to appear, 2008)Google Scholar
  6. 6.
    Bansal, N., Chan, H.-L., Pruhs, K., Rogozhnikov-Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: IBM Research Technical ReportGoogle Scholar
  7. 7.
    Bansal, N., Pruhs, K.: Speed scaling to manage temperature. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 460–471. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: SODA 2007: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 805–813 (2007)Google Scholar
  9. 9.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  10. 10.
    Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro. 20(6), 26–44 (2000)CrossRefGoogle Scholar
  11. 11.
    Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Energy efficient online deadline scheduling. In: SODA 2007: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 795–804 (2007)Google Scholar
  12. 12.
    Irani, S., Shukla, S., Gupta, R.: Online strategies for dynamic power management in systems with multiple power saving states. Trans. on Embedded Computing Sys (2003); Special Issue on Power Aware Embedded ComputingGoogle Scholar
  13. 13.
    Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage processors. In: Proc. ACM-IEEE Design Automation Conf., pp. 125–130 (2003)Google Scholar
  14. 14.
    Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks. Journal of Combinatorial Optimization 11(3), 305–319 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. on Computing 35, 658–671 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. IEEE Symp. Foundations of Computer Science, pp. 374–382 (1995)Google Scholar
  17. 17.
    Yun, H.S., Kim, J.: On energy-optimal voltage scheduling for fixed priority hard real-time systems. ACM Trans. on Embedded Computing Systems 2(3), 393–430 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikhil Bansal
    • 1
  • Ho-Leung Chan
    • 2
  • Kirk Pruhs
    • 2
  1. 1.IBM T.J. Watson ResearchNY 
  2. 2.Computer Science DepartmentUniversity of Pittsburgh 

Personalised recommendations