Advertisement

An Optimal On-Line Algorithm for Preemptive Scheduling on Two Uniform Machines in the ℓp Norm

  • Tianping Shuai
  • Donglei Du
  • Xiaoyue Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

One of the basic and fundamental problems in scheduling is to minimize the machine completion time vector in the ℓ p norm (a direct extension of the l  ∞  norm: the makespan) on uniform parallel machines. We concentrate on the on-line and preemptive version of this problem where jobs arrive one by one over a list and are allowed to be preempted. We present a best possible deterministic on-line scheduling algorithm along with a matching lower bound when there are two machines, generalizing existing results for the identical machines scheduling problem in the literature. The main difficulty in the design of the algorithm and the analysis of the resultant competitive ratio as well as the proof of the lower bound is that the competitive ratio is only known to be the root of some equation systems, which admits no analytic solution—a distinct feature from most existing literature on competitive analysis. As a consequence, we develop some new ideas to tackle this difficulty. Specifically we need to exploit the properties of the equations system that defines the competitive ratio.

Keywords

On-line algorithm Scheduling Preemption p norm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: SODA, pp. 493–500 (1997)Google Scholar
  2. 2.
    Avidor, A., Azar, Y., Sgall, J.: Ancient and new algorithms for load balancing in the ℓp norm. Algorithmica 29, 422–441 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: STOC, pp. 331–337 (2005)Google Scholar
  4. 4.
    Azar, Y., Epstein, A., Epstein, L.: Load balancing of temporary tasks in the ℓp norm. Theoretical Computer Science 361(2-3), 314–328 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algorithms. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 288–297. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Azar, Y., Taub, S.: All-Norm Approximation for Scheduling on Identical Machines. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 298–310. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Chandra, A.K., Wong, C.K.: Worst-case analysis of a placement algorithm related to storage allocation. SIAM Journal on Computing 1, 249–263 (1975)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Du, D.-L., Jiang, X., Zhang, G.: Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Manufacturing and Management Optimization 1(3), 345–351 (2005)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Epstein, L., Noga, J., Seiden, S., Sgall, J., Woeginger, G.J.: Randomized online scheduling on two uniform machines. Journal of Scheduling 4(2), 71–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Epstein, L., Tassa, T.: Optimal Preemptive Scheduling for General Target Functions. Journal of Computer and System Sciences 72(1), 132–162 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Approximation Algorithms for Scheduling on Multiple Machines. In: FOCS, pp. 254–263 (2005)Google Scholar
  12. 12.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of Production and Inventory, pp. 445–522. North-Holland, Amsterdam (1993)Google Scholar
  13. 13.
    Lin, L.: Semi-online scheduling algorithm under the ℓp norm on two identical machines. Journal of Zhejiang University (Science Edition) 34(2), 148–151 (2007) (in chinese)MathSciNetGoogle Scholar
  14. 14.
    Lin, L., Tan, Z.Y., He, Y.: Deterministic and randomized scheduling problems under the ℓp norm on two identical machines. Journal of Zhejiang University Science 6(1), 20–26 (2005)CrossRefGoogle Scholar
  15. 15.
    Tan, Z., He, Y., Epstein, L.: Optimal On-line Algorithms for the Uniform Machine Scheduling Problem with Ordinal Data. Information and Computation 196(1), 57–70 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wen, J., Du, D.-L.: Preemptive on-line scheduling for two uniform processors. Operations Research Letters 23, 113–116 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tianping Shuai
    • 1
  • Donglei Du
    • 2
  • Xiaoyue Jiang
    • 3
  1. 1.School of SciencesBeijing University of Posts and Telecommunication 
  2. 2.Faculty of Business AdministrationUniversity of New Brunswick 
  3. 3.College of EngineeringLouisiana State University 

Personalised recommendations