Advertisement

Abstract

Consider a digraph where the vertices represent people and an arc (i,j) represents the possibility of i giving a gift to j. The basic question we pose is whether there is an anonymity-preserving “gift assignment” such that each person makes and receives exactly one gift, and such that no person i can infer the remaining gift assignments from the fact that i is assigned to give a gift to j. We formalize this problem as a graph property involving vertex disjoint circuit covers, give a polynomial algorithm to decide this property for any given graph and provide a computational validation of the algorithm.

Keywords

Acceptable Solution Polynomial Algorithm ILOG CPLEX Connected Digraph Bipartite Digraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, A.V., Ridley, J.N.: The return of Secret Santa. Mathematical Gazette 85(503), 307–311 (2001)CrossRefGoogle Scholar
  2. 2.
    Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duncan, B.: Secret Santa reveals the secret side of giving. Technical Report 0601, University of Colorado at Denver (2006)Google Scholar
  4. 4.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)Google Scholar
  6. 6.
    ILOG. ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France (2006)Google Scholar
  7. 7.
    McGuire, K.M., Mackiw, G., Morrell, C.H.: The Secret Santa problem. Mathematical Gazette 83(498), 467–472 (1999)CrossRefGoogle Scholar
  8. 8.
    Penrice, S.: Derangements, permanents and christmas presents. American Mathematical Monthly 98(7), 617–620 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pinkham, R.: The Secret Santa problem revisited. Mathematical Gazette 85(502), 96–97 (2001)CrossRefGoogle Scholar
  10. 10.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)zbMATHGoogle Scholar
  11. 11.
    Tel, G.: Cryptografie, Beveiliging van de digitale maatschappij. Addison-Wesley, Reading (2002)Google Scholar
  12. 12.
    Verelst, J.: Secure computing and distributed solutions to the Secret Santa problem. Master’s thesis, Computer Science Dept., University of Utrecht (2003)Google Scholar
  13. 13.
    White, M.: The Secret Santa problem. Rose-Hulman Institute of Technology Undergraduate Math Journal 7(1) (paper 5) (2006)Google Scholar
  14. 14.
    Secret Santa. Wikipedia (2006), http://en.wikipedia.org/wiki/Secret_Santa

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leo Liberti
    • 1
  • Franco Raimondi
    • 2
  1. 1.LIXÉcole PolytechniquePalaiseauFrance
  2. 2.Dept. of Computer ScienceUniversity College LondonUK

Personalised recommendations