Advertisement

Shortest Path Queries in Polygonal Domains

  • Hua Guo
  • Anil Maheshwari
  • Jörg-Rüdiger Sack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

We consider shortest path queries in a polygonal domain P having n vertices and h holes. A skeleton graph is a subgraph of a Voronoi diagram of P. Our novel algorithm utilizes a reduced skeleton graph of P to compute a tessellation of P. It builds a data structure of size O(n 2) in O(n 2logn) time to support distance queries for any pair of query points in P in O(hlogn) time.

Keywords

Short Path Voronoi Diagram Query Point Voronoi Cell Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Computing 28(6), 2215–2256 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discete Comput. Geom. 18, 377–383 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, D.Z., Daescu, O., Klenk, K.S.: On geometric path query problems. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 248–257. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Chiang, Y.J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: SODA 1999: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 215–224 (1999)Google Scholar
  5. 5.
    Guibas, L., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. (JCSS) 39(2), 126–152 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Srinivasan, V., Nackman, L.R.: Voronoi diagram for multiply-connected polygonal domains I: algorithm. IBM Journal of Research and Development 31(3), 361–372 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yang, C.L., Wang, J.Y., Meng, X.X.: Upper bounds on the size of inner Voronoi diagrams of multiply connected polygons. J. Software 17(7), 1527–1534 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–35 (1983)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hua Guo
    • 1
  • Anil Maheshwari
    • 1
  • Jörg-Rüdiger Sack
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations