Confidently Cutting a Cake into Approximately Fair Pieces

  • Jeff Edmonds
  • Kirk Pruhs
  • Jaisingh Solanki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)


We give a randomized protocol for the classic cake cutting problem that guarantees approximate proportional fairness, and with high probability uses a linear number of cuts.


Query Complexity Fair Division Pair Path Unrelated Machine Balance Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azar, Y.: On-line Load Balancing. In: Online Algorithms - The State of the Art, pp. 178–195. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced Allocations. SIAM Journal of Computing 29, 180–200 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Brams, S.J., Taylor, A.D.: Fair Division – From cake cutting to dispute resolution. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  4. 4.
    Edmonds, J., Pruhs, K.: Cake cutting really isn’t a piece of cake. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006) (2006)Google Scholar
  5. 5.
    Edmonds, J., Pruhs, K.: Balanced Allocations of Cake. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 623–634 (2006)Google Scholar
  6. 6.
    Even, S., Paz, A.: A note on cake cutting. Discrete Applied Mathematics 7, 285–296 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Magdon-Ismail, M., Busch, C., Krishnamoorthy, M.S.: Cake cutting is not a piece of cake. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 596–607. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Mitzenmacher, M., Richa, A., Sitaraman, R.: The power of two random choices: A survey of the techniques and results. In: Pardalos, P., Rajasekaran, S., Rolim, J. (eds.) Handbook of Randomized Computing, Kluwer, Dordrecht (2000)Google Scholar
  9. 9.
    Johnson, N., Kotz, S.: Urn Models and Their Application. John Wiley and Sons, Chichester (1977)zbMATHGoogle Scholar
  10. 10.
    Krumke, S.O., Lipmann, M., de Paepe, W., Poensgen, D., Rambau, J., Stougie, L., Woeginger, G.J.: How to cut a cake almost fairly. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 263–264 (2002)Google Scholar
  11. 11.
    Robertson, J.M., Webb, W.A.: Approximating fair division with a limited number of cuts. Journal of Combinatorial Theory, Series A 72, 340–344 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Robertson, J.M., Webb, W.A.: Cake-cutting algorithms: Be fair if you can. A.K. Peters Ltd. (1998)Google Scholar
  13. 13.
    Sgall, J., Woeginger, G.J.: A Lower Bound for Cake Cutting. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 459–469. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Steinhaus, H.: The problem of fair division. Econometrica 16, 101–104 (1948)Google Scholar
  15. 15.
    Woeginger, G.J.: An approximation scheme for cake division with a linear number of cuts. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 896–901. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jeff Edmonds
    • 1
  • Kirk Pruhs
    • 2
  • Jaisingh Solanki
    • 1
  1. 1.Department of Computer Science and EngineeringYork University 
  2. 2.Computer Science DepartmentUniversity of Pittsburgh 

Personalised recommendations