Ambient calculus is a calculus for mobile computing able to express local communications inside hierarchical domains. So far the timing properties have not been considered in the framework of mobile ambients. We add timers to capabilities and ambients, and provide an operational semantics of the new calculus. Certain results are related to the passage of time, and some new behavioural equivalences over timed mobile ambients are defined. Timeout for network communication (TTL) can be naturally modelled by the time constraints over capabilities and ambients. The new formalism can be used to describe network protocols; Simple Network Management Protocol (SNMP) may implement its own strategy for timeout and retransmission in TCP/IP.


Transmission Control Protocol Operational Semantic Network Protocol Reduction Rule User Datagram Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aceto, L., Murphy, D.: Timing and Causality in Process Algebra. Acta Informatica 33(4), 317–350 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous pi-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 115–130. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Berger, M.: Towards Abstractions for Distributed Systems PhD thesis, Imperial College, Department of Computing (2002)Google Scholar
  4. 4.
    Bergstra, J.A., Klop, J.W.: Process Theory based on Bisimulation Semantics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 50–122. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  5. 5.
    Bugliesi, M., Castagna, G., Crafa, S.: Boxed Ambients. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 38–63. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L., Gordon, A.: Mobile Ambients. Theoretical Computer Science 240(1), 170–213 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ciobanu, G.: Interaction in time and space. In: Proceedings of Foundations of Interactive Computation. Electronic Notes in Theoretical Computer Science, pp. 45–61 (to appear, 2007)Google Scholar
  8. 8.
    Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. In: International Workshop on Quantitative Aspects of Programming Languages. Electronic Notes in Theoretical Computer Science, vol. 164(3), pp. 81–99 (2006)Google Scholar
  9. 9.
    Cleveland, R., Zwarico, A.: A theory of testing for real-time. Logic in Computer Science, 110–119 (1991)Google Scholar
  10. 10.
    Corradini, F.: On performance Congruences for Process Algebras. Information and Computation 145(2), 191–230 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Corradini, F.: Absolute versus relative time in process algebras. Information and Computation 156(1), 122–172 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gorrieri, R., Roccetti, M., Stancampiano, E.: A Theory of Processes with Durational Actions. Theoretical Computer Science 140(1), 73–94 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117, 221–239 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information and Computation 173(1), 82–120 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hirschkoff, D., Teller, D., Zimmer, P.: Using ambients to control resources. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International, Englewood Cliffs (1985)zbMATHGoogle Scholar
  17. 17.
    Levi, F., Sangiorgi, D.: Controlling interference in ambients. Principles of Programming Languages, 352–364 (2000)Google Scholar
  18. 18.
    Milner, R.: Communication and Concurrency. Prentice Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  19. 19.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  20. 20.
    Moller, F., Tofts, C.: A temporal Calculus of Communicating Systems. In: Groote, J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 401–415. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Stevens, W.R.: TCP/IP Illustrated, Volume 1 - The Protocols, vol. 1. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Bogdan Aman
    • 2
  • Gabriel Ciobanu
    • 1
    • 2
  1. 1.Faculty of Computer Science“A.I.Cuza” UniversityIaşiRomania
  2. 2.Institute of Computer ScienceRomanian, AcademyIaşiRomania

Personalised recommendations