Skip to main content

The Impacts of By-products on Optimal Supply Chain Design

  • Chapter
Geometric Modelling, Numerical Simulation, and Optimization

Abstract

During the last half decade, the metal industry has been in a harsh situation seeing their profit margins squeezed to an extreme. Many companies have been forced to close down furnaces and plants. To help a major metal producing company manage this process, we developed a strategic mixed integer programming model. The main decisions addressed by the model involve the future plant structure and production capacities, the production portfolio at each plant and the by-product production. Here, we present the underlying MIP-model and give computational results. In addition, we show how the valuable by-product production can have impact on the optimal supply chain design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.C. Arntzen, G.G. Brown, T.P. Harrison, and L.L. Trafton. Global supply chain management at Digital Equipment Corporation. Interfaces, 25(1):69–93, 1995.

    Google Scholar 

  2. R.H. Ballou and J.M. Masters. Commercial software for locating warehouses and other facilities. J. Bus. Logist., 14(2):71–107, 1993.

    Google Scholar 

  3. D. Bredstrom, J.T. Lundgren, M. Ronnqvist, D. Carlsson, and A. Mason. Supply chain optimization in the pulp mill industry — IP models, column generation and novel constraint branches. European J. Oper. Res., 156(1):2–22, 2004.

    Article  MathSciNet  Google Scholar 

  4. G.G. Brown, G.W. Graves, and M.D. Honczarenko. Design and operation of a multicommodity production/distribution system using primal goal decomposition. Manag. Sci., 33(11):1469–1480, 1987.

    Google Scholar 

  5. C. Canel and S.R. Das. The uncapacitated multi-period facilities location problem with profit maximization. Int. J. Phys. Distrib. Logist. Manag., 29(6):409–433, 1999.

    Article  Google Scholar 

  6. D. Carlsson and M. Ronnqvist. Supply chain management in forestry-case studies at Sodra Cell ab. European J. Oper. Res., 163(3):589–616, 2005.

    Article  MATH  Google Scholar 

  7. M.A. Cohen and S. Moon. An integrated plant loading model with economies of scale and scope. European J. of Oper. Res., 50(3):266–279, 1991.

    Article  MATH  Google Scholar 

  8. M.M. Cohen, M. Fisher, and R. Jaikumar. International manufacturing and distribution design networks: A normative model framework. In K. Ferdows, editor, Managing International Manufacturing, pages 67–93. Elsevier Science Publishers B.V (North-Holland), 1989.

    Google Scholar 

  9. Dash Optimization. Xpress-Optimizer reference manual, release 14, 2002.

    Google Scholar 

  10. A.M. Geoffrion and G.W. Graves. Multicommodity distribution system design by Benders Decomposition. Manag. Sci., 5(5):822–844, 1974.

    MathSciNet  Google Scholar 

  11. A.M. Geoffrion and R.F. Powers. Twenty years of strategic distribution system design: An evolutionary perspective. Interfaces, 25(5):105–128, 1995.

    Google Scholar 

  12. H. Gunnarsson, M. Ronnqvist, and J.T. Lundgren. Supply chain modelling of forest fuel. European J. Oper. Res., 158(1):103–123, 2004.

    Article  MATH  Google Scholar 

  13. J. Harkness and C. ReVelle. Facility location with increasing production costs. European J. Oper. Res., 145(1):1–13, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Philpott and G. Everett. Supply chain optimisation in the paper industry. Ann. Oper. Res., 108(1–4):225–237, 2001.

    Article  MATH  Google Scholar 

  15. M. Ronnqvist. Optimization in forestry. Math. Program., 97(1–2):267–284, 2003.

    MathSciNet  Google Scholar 

  16. J.F. Shapiro. On the connections among activity-based costing, mathematical programming models for analyzing strategic decisions, and the resource-based view of the firm. European J. Oper. Res., 118(2):295–314, 1999.

    Article  MATH  Google Scholar 

  17. J.F. Shapiro, Vijay M. Singhal, and S.N. Wagner. Optimizing the value chain. Interfaces, 23(2):102–117, 1993.

    Google Scholar 

  18. G.L. Sinha, B.S. Chandrasekaran, N. Mitter, G. Dutta, S.B. Singh, A.R. Choudhury, and P.N. Roy. Strategic and operational management with optimization at Tata Steel. Interfaces, 25(1):6–19, 1995.

    Article  Google Scholar 

  19. C.H. Timpe and J. Kallrath. Optimal planning in large multi-site production networks. European J. Oper. Res., 126(2):422–435, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. N.L. Ulstein, M. Christiansen, R. Gronhaug, N. Magnussen, and M.M. Solomon. Elkem uses optimization in redesigning its supply chain. Interfaces 34(4):314–325, 2006.

    Article  Google Scholar 

  21. V. Verter. An integrated model for facility location and technology acquisition. Comput. Oper. Res., 29(6):583–592, 2002.

    Article  MATH  Google Scholar 

  22. V. Verter and A. Dasci. The plant location and flexible technology acquisition problem. European J. Oper. Res., 136(2):366–382, 2002.

    Article  MATH  Google Scholar 

  23. A. Warszawski. Multi-dimensional location problems. Oper. Res. Q., 24(2):165–179, 1973.

    Article  MATH  Google Scholar 

  24. L.A. Wolsey. MIP modelling of changeovers in production planning and scheduling problems. European J. Oper. Res., 99(1):154–165, 1997.

    Article  MATH  Google Scholar 

  25. H. Yan, Z. Yu, and T.C. Edwin Cheng. A strategic model for supply chain design with logical constraints: formulation and solution. Comput. Oper. Res., 30(14):2135–2155, 2003.

    Article  MATH  Google Scholar 

  26. J. Zhang, Z. Liu, and Z. Ma. Some reverse location problems. European J. Oper. Res., 124(1):77–88, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christiansen, M., Grønhaug, R. (2007). The Impacts of By-products on Optimal Supply Chain Design. In: Hasle, G., Lie, KA., Quak, E. (eds) Geometric Modelling, Numerical Simulation, and Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68783-2_15

Download citation

Publish with us

Policies and ethics