Skip to main content

Modelling of Stratified Geophysical Flows over Variable Topography

  • Chapter

Abstract

In the present chapter a short review is given of the mathematical formulation relevant for geophysical flow modelling, and in addition computational examples are shown for some specific flow cases. These examples are described in some detail in order to illustrate useful methods to handle such problems in practice. The emphasis is on more local geophysical flows, including stratified flow over variable topography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, J.R.: Principles of Ocean Physics. Academic Press, London New York Sydney Tokio (1990).

    Google Scholar 

  2. Baines, P.G.: Topographic Effects in Stratified Flows. Cambridge University Press, Cambridge (1998).

    Google Scholar 

  3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967).

    MATH  Google Scholar 

  4. Belcher, S.E., Hunt, J.C.R.: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. (1998), 30, 507–538.

    Article  MathSciNet  Google Scholar 

  5. Blumberg, A.F., Herring, H.J.: Circulation modelling using orthogonal curvilinear coordinates. In: Nihoul, J.C.J., Jamart, B.M. (eds) Three-dimensional Models of Marine and Estuarine Dynamics. Elsevier Oceanography Series, Amsterdam (1987).

    Google Scholar 

  6. Boyer, D.L., Davies, P.A.: Laboratory studies of orographic effects in rotating and stratified flows. Annu. Rev. Fluid Mech. (2000), 32, 165–202.

    Article  MathSciNet  Google Scholar 

  7. Bryan, K., Cox, M.D.: An approximate equation of state for numerical models of ocean circulation. J. Phys. Oceanogr. (1972), 2, 510–514.

    Article  Google Scholar 

  8. Burchard, H., Petersen, O., Rippeth, T.P.: Comparing the performance of the k- and the Mellor-Yamada two-equation turbulence models. J. Geophys. Res. (1998), 103, 10543–10554.

    Article  Google Scholar 

  9. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York Berlin Heidelberg Tokyo (1984).

    Google Scholar 

  10. Dornback, A., Shumann, U.: Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorology (1993), 65, 323–355.

    Google Scholar 

  11. Durran, D.R.: Numerical methods for wave equations in geophysical fluid dynamics. Springer, New York Heidelberg (1999).

    Google Scholar 

  12. Eidsvik, K.J.: Some contributions to the uncertainty of sediment transport predictions. Continental Shelf Res. (2004), 24, 739–754.

    Article  Google Scholar 

  13. Eidsvik, K.J., Holstad, A., Lie, I., Utnes, T.: A prediction system for local wind variations in mountainous terrain. Boundary-Layer Meteorology (2004), 112, 557–586.

    Article  Google Scholar 

  14. Eidsvik, K.J., Utnes, T.: Flow separation and hydraulic transitions over hills modelled by the Reynolds equations. J. Wind Engineering and Industrial Aerodynamics (1997), 67 & 68, 403–413.

    Article  Google Scholar 

  15. Ferziger, J.H.: Large eddy simulation. In: Gatski, T.B., Hussaini, Y., Lumly, J.L. (eds) Simulation and Modeling of Turbulent Flows. Oxford University Press, New York Oxford (1996).

    Google Scholar 

  16. Ferziger, J.H:, Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin Heidelberg New York (1997).

    Google Scholar 

  17. Fletcher, C.A.J.: The group finite element method. Comput. Methods Appl. Mech. Engrg. (1983), 37, 225–244.

    Article  MathSciNet  Google Scholar 

  18. Gatsky, T.B., Speziale, C.G.: On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. (1993), 254, 59–78.

    Article  MathSciNet  Google Scholar 

  19. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York London Sydney Tokyo Toronto (1982).

    Google Scholar 

  20. Gresho, P.M., Chan, S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation. Int. J. Numer. Methods Fluids (1990), 11, 621–659.

    Article  MATH  MathSciNet  Google Scholar 

  21. Gresho, P.M., Sani, R.L.: Incompressible flow and the finite element method. Advection-diffusion and isothermal laminar flow. Wiley, Chichester New York Weinheim Brisbane Singapore Toronto (1998).

    MATH  Google Scholar 

  22. Holmedal, L.E., Utnes, T.: Physical-biological interactions and their effect on phytoplancton blooms in fjords and near-coastal waters. Submitted (2004).

    Google Scholar 

  23. Hunt, J.C.R., Snyder, W.H.: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech. (1980), 96, 671–704.

    Article  Google Scholar 

  24. Johansson, A.V.: Engineering turbulence models and their development, with emphasis on explicit algebraic Reynolds stress models. In: Oberlack, M., Busse, F.H. (eds) Theories of turbulence. Springer, Wien New York (2002).

    Google Scholar 

  25. Kaimal, J.C., Finnegan, J.J.: Atmospheric Boundary Layer Flows. Oxford University Press, Oxford (1994).

    Google Scholar 

  26. Kowalik, Z., Murty, T.S.: Numerical Modeling of Ocean Dynamics. World Scientific, Advanced Series on Ocean Engineering, Vol 5, Singapore New Jersey London Hong Kong (1993)

    Google Scholar 

  27. Kranenburg, C.: A K-Model for stably stratified nearly horizontal turbulent flows. Delft University of Technology (1985), Report No 4-85.

    Google Scholar 

  28. Kundu, P.K.: A Numerical Investigation of Mixed-Layer Dynamics. J. Phys. Oceangr. (1980), 10, 220–236.

    Article  Google Scholar 

  29. Kundu, P.K., Cohen, I.M.: Fluid Mechanics, Third Edition, Chapter 14. Elsevier Academic Press, Amsterdam Boston Heidelberg London (2004)

    Google Scholar 

  30. Lambert, J.D.: Numerical methods for ordinary differential systems. Wiley, Chichester New York Brisbane Toronto Singapore (1991)

    MATH  Google Scholar 

  31. Launder, B.E.: On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech. (1975), 67, 569–581.

    Article  Google Scholar 

  32. Leendertse, J.J., Liu, S.K.: A three-dimensional model for the estuaries and coastal seas. Vol II, Aspects of Computation. RAND Corporation. R-1764-OWRT.

    Google Scholar 

  33. Lynch, D.R., Werner, F.E.: Three-dimensional hydrodynamics on finite elements. Part II: Non-linear time-stepping model. Int. J. Numer. Methods Fluids (1991), 12, 507–533.

    Article  MATH  Google Scholar 

  34. Mellor, G.L.: Introduction to Physical Oceanography. Springer, New York Berlin Heidelberg (1996).

    Google Scholar 

  35. Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Pev. Geophys. Space Phys. (1982), 20, 851–875.

    Google Scholar 

  36. Moe, H., Ommundsen, A., Gjevik, B.: A high resolution tidal model for the area around The Lofoten Islands, northern Norway. Continental Shelf Res. (2002), 22, 485–504.

    Article  Google Scholar 

  37. Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Wiley, Chichester New York Brisbane Toronto Singapore (1994).

    Google Scholar 

  38. Monismith, S.: An experimental study of the upwelling responce of stratified reservoirs to surface shear stress. J. Flid Mech. (1986), 171, 407–439.

    Article  Google Scholar 

  39. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York Heidelberg Berlin London Paris Tokyo (1987).

    MATH  Google Scholar 

  40. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2001).

    Google Scholar 

  41. Raitby, G.D., Stubley, G.D., Taylor, P.A.: The Askervein Hill project: A finite control volume prediction of three-dimensional flows over hill. Boundary-Layer Meteorology (1987), 39, 247–267.

    Article  Google Scholar 

  42. Riley, J.J., Lelong, M.P.: Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. (2000), 32, 613–657.

    Article  MathSciNet  Google Scholar 

  43. Rodi, W.: Turbulence models and their applications in hydraulics. IAHR Monograph, Int. Assoc. for Hydraulic Res., Delft (1984).

    Google Scholar 

  44. Speziale, C.G.: Modelling of turbulent transport equations. In: Gatski, T.B., Hussaini, Y., Lumly, J.L. (eds) Simulation and modeling of turbulent flows. Oxford University Press, New York Oxford (1996).

    Google Scholar 

  45. Stull, R.B.: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht Boston London (1988).

    MATH  Google Scholar 

  46. Svensson, U.: A mathematical model of the seasonal thermocline. Rep. 1002, Dep. of Water Resour. Eng., Univ. of Lund, Sweden (1978).

    Google Scholar 

  47. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press (1976).

    Google Scholar 

  48. Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Computer Science and Engineering, 6, Springer, Berlin (1999).

    Google Scholar 

  49. Utnes, T., Brørs, B.: Numerical modelling of 3-D circulation in restricted waters. Applied Math. Modelling (1993), 17, 1–14.

    Google Scholar 

  50. Utnes, T., Eidsvik, K.J.: Turbulent flows over mountainous terrain modelled by the Reynolds equations. Boundary-Layer Meteorology (1996), 79, 393–416.

    Article  Google Scholar 

  51. Utnes, T., Meling, T.S.: Treatment of turbulent wall boundary conditions using linear-logaritmic elements. Comput. Methods Appl. Mech. Engrg. (1998), 169, 123–134.

    Article  Google Scholar 

  52. White, F.M.: Viscous Fluid Flow. McGraw-Hill, Second Edition New York (1991).

    Google Scholar 

  53. Xu, D., Ayotte, K.W., Taylor, P.A.: Development of a non-linear finite difference model for turbulent boundary-layer flow over topography. Boundary-Layer Meteorology (1994), 70, 341–367.

    Article  Google Scholar 

  54. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Volume 3: Fluid Dynamics. Butterworth-Heinemann, Oxford Auckland Boston Johannesburg Melbourne New Delhi (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Utnes, T. (2007). Modelling of Stratified Geophysical Flows over Variable Topography. In: Hasle, G., Lie, KA., Quak, E. (eds) Geometric Modelling, Numerical Simulation, and Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68783-2_11

Download citation

Publish with us

Policies and ethics