Skip to main content

Abstract

Studies during the past two decades have demonstrated that the biosphere extends to great depths beneath the surface of the Earth’s continents. This deep biosphere contains diverse and active microbial communities whose biomass may even exceed that of surface organisms. The distribution of these subsurface microbes is controlled by multiple interacting factors, e.g., porosity of sediments and rocks, temperature, pressure, energy and nutrient availability, and rates of geohydrologic processes. Progress in understanding life in the subsurface has been limited by available technology but also by funding. Knowledge of the deep biosphere is based on only a few boreholes and many fundamental research questions remain unanswered. While the International Continental Scientific Drilling Program (ICDP) has included geobiological components to some recent projects, there is an opportunity for even greater scientific contributions. We recommend that the ICDP follow the example of the Integrated Ocean Drilling Program (IODP), which now includes a biological component to every sampling mission and furthermore makes biological inquiry the central focus of several of its drilling campaigns. By addressing major questions in the geobiology of the subsurface, we anticipate that the ICDP will achieve even greater prominence during its second decade and thus increase the potential for scientific contributions in all of the disciplines within subsurface science.

GeoBiosphere Group is: Hans Amann (Maritime Technology Group, Technical University of Berlin, Germany), Stephen G. Franks (Saudi Aramco, Dhahran, Saudi Arabia), Jens Kallmeyer (NASA Astrobiology Institute, University of Rhode Island, USA), Kai Mangelsdorf (GeoForschungsZentrum Potsdam, Germany), R. John Parkes (School of Earth, Ocean and Planetary Sciences, Cardiff University, UK), Dirk Wagner (Alfred Wegener Institute for Polar and Marine Research Potsdam, Germany), Heinz Wilkes (GeoForschungsZentrum Potsdam, Germany), Klaus-G. Zink (GeoForschungsZentrum Potsdam, Germany)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PA, Allen JR (1990) Basin Analysis: Principles and Applications. Blackwell Scientific Publications, Oxford, 451 pp

    Google Scholar 

  • Amann H, Maggiulli M, Hohnberg HJ, Thjunjoto, Parkes RJ, Martin D (2004) The deep sea floor, nature’s largest bio-reactor: Methods and tools to study, protect and use it. Marine Biotechnology Conference 2003, Chiba, Japan, Sept. 21–27, 2003; printed in Marine Biotechnology, Special Proceedings Issue, Springer, New York, 2004, pp 168–173

    Google Scholar 

  • Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404: 722–723

    Article  Google Scholar 

  • Baker BJ, Moser DB, MacGregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B, Speolstra N, Loos S, Takai K, Sherwood Lollar B, Fredrickson J, Balkwill D, Onstott TC, Wimpee CF, Stahl DA (2003) Related assemblages of sulphate-reducing microorganisms associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environmental Microbiology 5: 267–277

    Article  Google Scholar 

  • Bale SJ, Goodman PA, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfatereducing bacterium from deep sediment layers in the Japan Sea. International Journal of Systematic Bacteriology 47: 515–521

    Google Scholar 

  • Balkwill DL (1989) Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiology Journal 7: 33–52

    Google Scholar 

  • Balkwill DL, Fredrickson JK, Thomas JM (1989) Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments. Applied and Environmental Microbiology 55: 1058–1065

    Google Scholar 

  • Berner RA (1973) Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth and Planetary Science Letters 17: 77–86

    Article  Google Scholar 

  • Boivin-Jahns V, Ruimy R, Bianchi A, Daumas S, Christen R (1996) Bacterial diversity in a deep-subsurface clay environment. Applied and Environmental Microbiology 62: 3405–3412

    Google Scholar 

  • Boone DR, Liu Y, Zhao Z, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernos sp. Nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. International Journal of Systematic Bacteriology, 45: 441–448

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Faber E, Koch U, Nitsche HM, Strauch G (2005) Seismically triggered microbial methane production relating to the Vogtland — NW Bohemia earthquake swarm period 2000, Central Europe. Geochemical Journal 39: 441–450

    Article  Google Scholar 

  • Brockman FJ, Kieft TL, Fredrickson JK, Bjornstad BN, Li SW, Spangenburg W, Long PE (1992) Microbiology of vadose zone paleosols in south-central Washington State. Microbial Ecology 23: 279–301

    Article  Google Scholar 

  • Chandler DP, Brockman FJ, Bailey TJ, Fredrickson JK (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microbial Ecology 36: 37–50

    Article  Google Scholar 

  • Chapelle F (1993). Ground-water Microbiology and Geochemistry. Wiley, New York, 424 pp

    Google Scholar 

  • Chapelle FH, Lovley DR (1990) Rates of Microbial metabolism in deep coastal plain aquifers. Applied and Environmental Microbiology 56:1865–1874

    Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415: 312–315

    Article  Google Scholar 

  • Chilingarian GV (1983) Compactional diagenesis. In: Parker A, Sellwood BW (eds) Sediment Diagenesis. Dordrecht, The Netherlands, D. Reidel Publishing Company, pp 57–168

    Google Scholar 

  • Coleman ML (1993) Microbial processes-controls on the shape and composition of carbonate concretions. Marine Geology 113: 127–140

    Article  Google Scholar 

  • Colwell FS, Smith RS (2004) Unifying principles of the deep terrestrial and deep marine biospheres, In: Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (eds) Subseafloor Biosphere at Mid-Ocean Ridges, Washington, D.C., American Geophysical Union, pp 355–367

    Google Scholar 

  • Colwell FS, Stormberg GJ, Phelps TJ, Birnbaum SA, McKinley J, Rawson SA, Veverka C, Goodwin S, Long PE, Russell BF, Garland T, Thompson D, Skinner P, Grover S (1992) Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. Journal of Microbiological Methods 15: 279–292

    Article  Google Scholar 

  • Colwell FS, Onstott TC, Delwiche ME, Chandler D, Fredrickson JK, Yao Q-J, McKinley JP, Boone DR, Griffiths R, Phelps TJ, Ringelberg DB, White DC, LaFreniere L, Balkwill D, Lehman RM, Konisky J, Long PE (1997) Microorganisms from deep, high temperature sandstones: constraints on microbial colonization. Federation of European Microbiological Societies Microbiology Reviews 20: 425–435

    Google Scholar 

  • Colwell, FS, Delwiche ME, Blackwelder D, Wilson MS, Lehman RM, Uchida T (1999) Microbial communities from core intervals, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. In: Dallimore SR, Uchida T, Collett TS (eds), Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, pp 189–195

    Google Scholar 

  • Colwell F, Matsumoto R, Reed D (2004) A review of the gas hydrates, geology, and biology of the Nankai Trough. Chemical Geology 205: 391–404

    Article  Google Scholar 

  • Coveney RM, Goebel ED, Zeller EJ, Dreschoff GAM, Angino EE (1987) Serpenitization and the origin of hydrogen gas in Kansas. AAPG Bulletin-American Association of Petroleum Geologists 71: 39–48

    Google Scholar 

  • Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappe MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299: 120–123

    Article  Google Scholar 

  • Cragg BA, Harvey SM, Fry JC, Herbert RA, Parkes RJ (1992) Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B. Proceedings of the Ocean Drilling Program, Scientific Results 127/128: 761–776

    Google Scholar 

  • Cragg BA, Parkes RJ, Fry JC, Weightman AJ, Rochelle PA, Maxwell JR (1996) Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth and Planetary Science Letters 139: 497–507

    Article  Google Scholar 

  • Curtis CD, Hughes CR, Whiteman JA, Whittle CK (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine 49: 375–386

    Article  Google Scholar 

  • Deming JW, Baross JA (1993) Deep-sea smokers-Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta 57: 3219–3230

    Article  Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs, K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes JR, Schippers A, Smith DC, Teske A, Wiegel A, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306: 2216–2221

    Article  Google Scholar 

  • D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295: 2067–2070

    Article  Google Scholar 

  • Fiedler S, Wagner D, Kutzbach L, Pfeiffer E-M (2004) Element redistribution along hydraulic and redox gradients of low-centered polygons, Lena Delta, Northern Siberia. Soil Science Society of America Journal 68: 1002–1011

    Article  Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science 281: 978–980

    Article  Google Scholar 

  • Fredrickson JK, Onstott TC (1996) Microbes deep inside the Earth. Scientific American 275: 42–47

    Article  Google Scholar 

  • Fredrickson JK, Garland TR, Hicks RJ, Thomas JM, Li SW, McFadden KM (1989) Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiology Journal 7: 53–66

    Google Scholar 

  • Fredrickson JK, Brockman FJ, Bjornstad BN, Long PE, Li SW, McKinley JP, Conca JL, Kieft TL, Balkwill DL (1994) Microbiological characteristics of pristine and contaminated deep vadose sediments from an arid region. Geomicrobiology Journal 11: 95–107

    Google Scholar 

  • Fredrickson JK, SW Li, FJ Brockman, Haldeman DL, Amy PS, Balkwill DL (1995) Time-dependent changes in viable numbers and activities of aerobic heterotrophic bacteria in subsurface samples. Journal of Microbiological Methods 21: 253–265

    Article  Google Scholar 

  • French HM (1996) The Periglacial Environment. Edinburgh, Addison Wesley Longman, 341 pp

    Google Scholar 

  • Gates WP, Wilkerson HT, Stucki JW (1993) Swelling properties of microbially reduced ferruginous smectite. Clays and Clay Minerals 41: 360–364

    Article  Google Scholar 

  • Ghiorse WC, Balkwill DL (1983) Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Ground Water 24: 213–224

    Google Scholar 

  • Gilichinsky D, Wagener S (1995) Microbial life in permafrost: A historical review. Permafrost Periglacial Processes 6: 243–250

    Article  Google Scholar 

  • Haldeman DL, Amy PS, Russell CE, Jacobson R (1995) Comparison of drilling and mining as methods for obtaining microbiological samples from the deep subsurface. Journal of Microbiological Methods 21: 305–316

    Article  Google Scholar 

  • Hazen TC, Jimenez L, Devictoria GL, Fliermans CB (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecology 22: 293–304

    Article  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344–352

    Article  Google Scholar 

  • Hiebert FK, Bennett PC (1992) Microbial control of silicate weathering in organic-rich ground water. Science 258: 278–281

    Article  Google Scholar 

  • Hirsch P, Rades-Rohkohl E (1983) Microbial diversity in a groundwater aquifer in northern Germany. Developments in Industrial Microbiology 24: 183–200

    Google Scholar 

  • Hoffman BA (1992) Isolated reduction phenomenon in red beds: a result of porewater radiolysis. In: Kharaka YK, Maest AS (eds) Water-Rock Interaction, Balkema/Rotterdam/Brookfield, pp 503–506

    Google Scholar 

  • Horsfield B, McLimans RK (1984) Geothermometry and geochemistry of aqueous and oil-bearing fluid inclusions from Fateh Field, Dubai. In: Shenk P, De Leeuw JW, Lijmbach GWM (eds) Advances in Organic Geochemistry 1983. Oxford, Pergamon Journals, pp 733–740

    Google Scholar 

  • Horsfield B, Schenk HJ, Zink K-G, Ondrak R, Dieckmann V, Kallmeyer J, Mangelsdorf K, di Primio R, Wilkes H, Parkes RJ, Fry JC, Cragg B (2006) Living microbial ecosystems within the active zone of catagenesis: implications for feeding the deep biosphere. Earth and Planetary Science Letters 246: 55–69

    Article  Google Scholar 

  • Horsfield B, Sykes R, Parkes RJ, et al. (in prep.) Deep biosphere in terrestrial systems (DEBITS). EOS

    Google Scholar 

  • House CH, Cragg BA, Teske A (2003) Drilling contamination tests during ODP Leg 201 using chemical and particulate tracers. In: D’Hondt SL, Jørgensen BB, Miller DJ, et al. (eds) Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 201, pp 1–19

    Google Scholar 

  • Hutchens E, Valsami-Jones E, McEldowney S, Gaze W, McLean J (2003) The role of heterotrophic bacteria in feldspar dissolution-an experimental approach, Mineralogical Magazine 67: 1157–1170

    Article  Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Applied and Environmental Microbiology 69: 7224–7235

    Article  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415: 454–456

    Article  Google Scholar 

  • Jain AK, Chhabra BB, Raina A, Kumar M (2005) Microbial Profiling of Mallik-5-L-38 gas hydrate production research well, Mackenzie Delta, Canada. In: Dallimore SR, Collett TS (eds) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Vol. 585, Geological Survey of Canada, Bulletin, Microbiology chapter pp 1–7

    Google Scholar 

  • Jiménez L (1990) Molecular analysis of deep-subsurface bacteria. Applied and Environmental Microbiology 56: 2108–2113

    Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination from the Canadian High Arctic. Applied and Environmental Microbiology 71: 1035–1041

    Article  Google Scholar 

  • Jurgens G (2005) Activity and diversity of methanogenic Archaea under extreme environmental conditions in Late Pleistocene permafrost sediments of the Lena Delta, Siberia. ESF Joint Initiative: Investigating Life in Extreme Environments Workshop, Sant Feliu de Guixols, Spain, November 6–8, 2005

    Google Scholar 

  • Kallmeyer J, Mangelsdorf K, Cragg BA, Parkes RJ, Horsfield B (in press) Techniques for geomicrobiological contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiology Journal

    Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301: 934

    Article  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Applied and Environmental Microbiology 64: 1510–1513

    Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe, K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307: 1428–1434

    Article  Google Scholar 

  • Kennicutt MCI, Brooks JM, Cox HB (1993) The origin and distribution of gas hydrates in marine sediments. In: Engel H, Macko A (eds) Organic Geochemistry: Principles and Applications, New York, Plenum Press, pp 535–544

    Google Scholar 

  • Kerr RA (1997) Life goes to extremes in the deep Earth—and elsewhere. Science 276: 703–704

    Article  Google Scholar 

  • Kieft TL, Phelps TJ (1997) Life in the slow lane: Activities of microorganisms in the subsurface. In: Amy PS, Haldeman DL (eds) The Microbiology of the Terrestrial Subsurface, Boca Raton, CRC Press, pp 137–163

    Google Scholar 

  • Kieft TL, Amy PS, Bjornstad BN, Brockman FJ, Fredrickson JK, Rosacker LL (1993) Microbial abundance and activities in relation to water potential in the vadose zones of arid and semiarid sites. Microbial Ecology 26: 59–78

    Article  Google Scholar 

  • Kieft TL, Kovacik WP Jr, Ringelberg DB, White DC, Haldeman DL, Amy PS, Hersman LE (1997) Factors limiting to microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada. Applied and Environmental Microbiology 63: 3128–3133

    Google Scholar 

  • Kieft TL, Murphy EM, Haldeman DL, Amy PS, Bjornstadt BN, McDonald EV, Ringelberg DB, White DC, Stair JO, Griffiths RP, Gsell TC, Holben WE, Boone DR (1998) Microbial transport, survival, and succession in a sequence of buried sediments. Microbial Ecology 36: 336–348

    Article  Google Scholar 

  • Kieft TL, McCuddy SM, Onstott TC, Davidson M, Lin L-H, Mislowack B, Pratt L, Boice E, Sherwood Lollar B, Lippmann-Pipke J, Pfiffner SM, Phelps TJ, Gihring T, Moser D, van Heerden A (2005) Geochemically generated, energyrich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiology Journal 22: 325–335

    Article  Google Scholar 

  • Kieft TL, Phelps TJ, Fredrickson JK (in press) Drilling, coring, and sampling subsurface environments. In: Mills AL (ed) Manual of Environmental Microbiology, Third Edition, Washington, D.C., American Society for Microbiology Press

    Google Scholar 

  • Killops SD, Killops VJ (1993) An Introduction to Organic Geochemistry, New York, John Wiley & Sons, 265 pp

    Google Scholar 

  • Kormas KA, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). Federation of European Microbiological Societies Microbiology Ecology 45: 115–125

    Google Scholar 

  • Kostka JE, Stucki JW, Nealson KH, Wu J (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays and Clay Minerals 44: 522–529

    Article  Google Scholar 

  • Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews 58: 367–395

    Article  Google Scholar 

  • Krumholz LR, McKinley JP, Ulrich GA, Suflita JM (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386: 64–66

    Article  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effects of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69: 341–362

    Article  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate-a major reservoir of carbon in shallow geosphere? Chemical Geology 71: 41–51

    Article  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. Natural Gas Hydrates: Occurrence, Distribution, and Detection. American Geophysical Union, Washington D.C., Geophysical Monograph 124: 3–18

    Google Scholar 

  • Larter S, di Primio R (2005) Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Organic Geochemistry 36: 299–310

    Article  Google Scholar 

  • Larter S, Wilhelms A, Head I, Koopmans M, Aplin A, Di Primio R, Zwach C, Erdmann M, Telnæs N (2003) The controls on the composition of biodegraded oils in the deep subsurface-part 1: Biodegradation rates in petroleum reservoirs. Organic Geochemistry 34: 601–613

    Article  Google Scholar 

  • Lehman RM, Colwell FS, Ringelberg DB, White DC (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. Journal of Microbiological Methods 22: 263–281

    Article  Google Scholar 

  • L’Haridon S, Reysenbach A-L, Glénat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223–224

    Article  Google Scholar 

  • Lin L-H, Hall JA, Lippmann J, Ward JA, Sherwood Lollar, B, Onstott TC (2005a) Radiolytic H2 in the continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry Geophysics Geosystems 6: Q07003, doi:10.1029/2004GC000907

    Google Scholar 

  • Lin L-H, Slater GF, Sherwood Lollar B, Lacrampe-Couloume G, Onstott TC (2005b) The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochimica et Cosmochimica Acta 69: 893–903 Lippmann J, Stute M, Torgersen T, Moser DP, Hall J, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta 67: 4597–4619

    Article  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology 49: 219–286

    Google Scholar 

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Reviews of Geophysics 33: 365–381

    Article  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 77: 103–116

    Article  Google Scholar 

  • Mangelsdorf K, Haberer RM, Zink K-G, Dieckmann V, Wilkes H, Horsfield B (2005) Molecular indicators for the occurrence of deep microbial communities at the Mallik 5L-38 gas Hydrate Research Well. In: Dallimore SR, Collett TS (eds) Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Vol. 585, Geological Survey of Canada, Bulletin, pp 1–11

    Google Scholar 

  • Martini AM, Budai JM, Walter LM, Schoell M (1996) Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature 383: 155–158

    Article  Google Scholar 

  • McMahon PB, Chapelle FH (1991a) Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and [δ]13C evolution. Journal of Hydrology 127: 109–135

    Article  Google Scholar 

  • McMahon PB, Chapelle FH (1991b) Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349: 233–235

    Article  Google Scholar 

  • Morita RY, Zobell CE (1955) Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Research 3: 6–73

    Google Scholar 

  • Moser DP, Onstott, TC, Fredrickson JK, Brockman FJ, Balkwill DL, Drake GR, Pfiffner S, White DC, Takai K, Pratt LM, Fong J, Sherwood Lollar B, Slater G, Phelps TJ, Spoelstra N, Deflaun M, Southam G, Welty AT, Baker BJ, Hoek J (2003) Temporal shifts in microbial community structure and geochemistry of an ultradeep South African gold mine borehole. Geomicrobiology Journal 20: 517–548

    Google Scholar 

  • Murphy EM, Shramke JA, Fredrickson JK, Bledsoe HW, Francis AJ, Sklarew DS, Linehan JC (1992) The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf aquifer. Water Resources Research 28: 723–740

    Article  Google Scholar 

  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environmental Microbiology 6: 274–287

    Article  Google Scholar 

  • Onstott TC, Phelps TJ, Colwell FS, Ringelberg D, White DC, Boone DR, McKinley JP, Stevens TO, Long PE, Balkwill DL, Griffin T, Kieft TL (1998) Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiology Journal 15: 353–385

    Google Scholar 

  • Onstott TC, Phelps TJ, Kieft T, Colwell FS, Balkwill DL, Fredrickson JK, Brockman FJ (1999) A global perspective on the microbial abundance and activity in the deep subsurface, In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments. Dordrecht, The Netherlands, Kluwer Publications, pp 489–500

    Google Scholar 

  • Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and contaminant microbes in ultradeep mines. Environmental Microbiology 5: 1168–1191

    Article  Google Scholar 

  • Parkes RJ, Wellsbury P (2004) Deep biospheres. In: Bull AT (ed) Microbial Diversity and Bioprospecting. Washington, D.C., American Society for Microbiology Press, pp 120–129

    Google Scholar 

  • Parkes RJ, Cragg B, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371: 410–413

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Goodman K, Fry JC (1995) A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. Journal of Microbiological Methods 23: 235–249

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeology Journal 8: 11–28

    Article  Google Scholar 

  • Parkes RJ, Cragg BA, Weightman AJ, Webster G, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor bacteria stimulated at interfaces over geological time. Nature 436: 390–394

    Article  Google Scholar 

  • Pedersen K (1993). The deep subterranean biosphere. Earth Science Reviews 34: 243–260

    Article  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. Federation of European Microbiological Societies Microbiology Reviews 20: 399–414

    Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. Federation of European Microbiological Societies Microbiology Letters 185: 9–16

    Google Scholar 

  • Pedersen K, Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microbial Ecology 20: 37–52

    Article  Google Scholar 

  • Pedersen K, Hallbeck L, Arlinger J, Erlandson AC, Jahromi N (1997) Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. Journal of Microbiological Methods 30: 179–192

    Article  Google Scholar 

  • Peters KE, Moldowan JM (1993) The Biomarker Guide, Englewood Cliffs, Prentice Hall, 360 pp

    Google Scholar 

  • Phelps TJ, Fredrickson JK (2002) Drilling, coring, and sampling subsurface environments, In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of Environmental Microbiology, 2nd Edition, Washington, D.C., American Society for Microbiology Press, pp 679–695

    Google Scholar 

  • Phelps TK, Fliermans CB, Garland TR, Pfiffner SM, White DC (1989) Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. Journal of Microbiological Methods 9: 267–279

    Article  Google Scholar 

  • Phelps TJ, Murphy EM, Pfiffner SM, White DC (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microbial Ecology 3: 335–34

    Article  Google Scholar 

  • Philpotts AR (1990) Principles of Igneous and Metamorphic Petrology. Englewood Cliffs, New Jersey, Prentice Hall, 498 pp

    Google Scholar 

  • Poelchau HS, Baker DR, Hantschel T, Horsfield B, Wygrala B (1997) Basin simulation and the design of the conceptual basin model. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and Basin Evolution, Heidelberg, Springer Verlag, pp 3–70

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Article  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere, In: Bull AT (ed) Microbial Diversity and Bioprospecting. Washington, D.C., American Society for Microbiology Press, pp 130–145

    Google Scholar 

  • Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS, (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Applied and Environmental Microbiology 68: 3579–3770

    Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 1098–1101

    Article  Google Scholar 

  • Ringelberg DB, Sutton S, White DC (1997) Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phosoholipids fatty acids. Federation of European Microbiological Societies Microbiological Reviews 20: 371–377

    Google Scholar 

  • Rogers JR, Bennett PC, Hiebert FK (1998) Are feldspars a source of phosphorus for microorganisms? [abs.]. Geological Society of America Annual Meeting, Abstracts with Programs 30(7): 305

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092–1101

    Article  Google Scholar 

  • Sagemann J, Bale SJ, Briggs DEG, Parkes RJ (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochimica et Cosmochimica Acta 63: 1083–1095

    Article  Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433: 861–864

    Article  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 44: 649–661

    Article  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295: 1514–1516

    Article  Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochimica et Cosmochimica Acta 57: 5087–5097

    Article  Google Scholar 

  • Sherwood Lollar B, Westgate TD, Ward JA, Slater GF, Lacrampe-Couloume G (2002) Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416: 522–524

    Article  Google Scholar 

  • Smith DC, Spivack AJ, Fisk MR, Haveman SA, Staudigel H (2000) Tracer-based estimates of drilling-induced microbial contamination of deep-sea crust. Geomicrobiology Journal 17: 207–219

    Article  Google Scholar 

  • Smith JW, Pallasser RJ (1996) Microbial origin of Australian coalbed methane. American Association of Petroleum Geologists Bulletin 80: 891–897

    Google Scholar 

  • Spock LE (1962) Guide to the Study of Rocks, New York, Harper and Brothers, 298 pp

    Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745

    Article  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450–454

    Article  Google Scholar 

  • Stevens TO, McKinley JP (2000) Abiotic controls on H2 production from basaltwater reactions and implications for aquifer biogeochemistry. Environmental Science and Technology 34: 826–831

    Article  Google Scholar 

  • Stevens TO, McKinley JP, Fredrickson JK (1993) Bacteria associated with deep, alkaline, anaerobic groundwater in Southeast Washington. Microbial Ecology 25: 35–50

    Article  Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4: 143–151

    Article  Google Scholar 

  • Stückrad O, Schumann G, Thiel V, Reitner J (in prep) Evidence of microbial life within the deep saline fluid from the KTB pilot hole. Geomicrobiology Journal

    Google Scholar 

  • Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in procaryotes and sediments deciphered by highperformance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry 18: 617–628

    Article  Google Scholar 

  • Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. Federation of European Microbiological Societies Microbiology Ecology 51: 109–121

    Google Scholar 

  • Takai K, Moser DP, DeFlaun MF, Onstott, TC, Fredrickson JK (2001a) Archaeal diversity in waters from deep South African gold mines. Applied and Environmental Microbiology 67: 5750–5760

    Article  Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001b) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. International Journal of Systematic and Evolutionary Microbiology 51: 1245–1256

    Google Scholar 

  • Thielemann T, Cramer B, Schippers A (2004) Coalbed methane in the Ruhr Basin, Germany: a renewable energy resource? Organic Geochemistry 35: 1537–1549

    Google Scholar 

  • Tissot B, Welte DH (1978) Petroleum Formation and Occurrence, Berlin, Springer Verlag, 699 pp

    Google Scholar 

  • Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. Federation of European Microbiological Societies Microbiology Ecology 48: 357–367

    Google Scholar 

  • Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien J-L, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. International Journal of Systematic and Evolutionary Microbiology 55: 345–351

    Article  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environmental Science and Technology 37: 5213–5218

    Article  Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81: 271–282

    Article  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. Federation of European Microbiological Societies Microbiology Reviews 20: 277–290

    Google Scholar 

  • Wagner D, Gattinger A (2004) Archaeal activity and biomass in Holocene permafrost deposits of the Lena Delta. International Conference on Arctic Microbiology, Rovaniemi, Finland, March 22–25, 2004

    Google Scholar 

  • Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost and Periglacial Processes 14: 173–185

    Article  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environmental Microbiology 7: 1582–1592

    Article  Google Scholar 

  • Wan J, Wilson JL, Kieft TL (1994) Influence of the gas-water interface on transport of microorganisms through unsaturated porous media. Applied and Environmental Microbiology 60: 509–516

    Google Scholar 

  • Ward JA, Slater GF, Moser DP, Lin L-H, Lacrampe-Couloume G, Bonin AS, Davidson M, Hall JA, Mislowac B, Bellamy RES, Onstott TC, Sherwood Lollar B (2004) Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the Deep Biosphere. Geochimica et Cosmochimica Acta 68: 3239–3250

    Article  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. Journal of Microbiological Methods 55: 155–164

    Article  Google Scholar 

  • Wellsbury P, Parkes RJ (2000) Deep Biosphere: source of methane for oceanic hydrate. In: Max MD (ed) Natural Gas Hydrates in Oceanic and Polar Environments, Dordrecht, The Netherlands, Kluwer, pp 91–104

    Google Scholar 

  • Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388: 573–576

    Article  Google Scholar 

  • Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean. Federation of European Microbiological Societies Microbiology Ecology 42: 59–70

    Google Scholar 

  • Wenger LM, Davis CL, Isaksen GH (2001) Multiple controls on petroleum biodegradation and impact on oil quality. Society of Petroleum Engineers, Reservoir Evaluation ? Engineering 5, 375–383

    Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotope evidence. Geochimica et Cosmochimica Acta 50: 693–709

    Article  Google Scholar 

  • Whitman B, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences USA 95: 6578–6583

    Article  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology 12: 259–276

    Article  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411: 1034–1037

    Article  Google Scholar 

  • Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Archives of Microbiology 177: 235–243

    Article  Google Scholar 

  • Wilson JT, McNabb JF, Balkwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 24: 225–233

    Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Hegnibottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography 2: 132–154

    Article  Google Scholar 

  • Zink K-G, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Analytical and Bioanalytical Chemistry 380: 798–812

    Article  Google Scholar 

  • Zink K-G, Wilkes H, Disko U, Elvert M, Horsfield B (2003) Intact phospholipids — microbial “life markers” in marine deep subsurface sediments. Organic Geochemistry 34: 755–769

    Article  Google Scholar 

  • Zlatkin IV, Schneider M, de Bruijn FJ, Forney LJ (1996) Diversity among bacteria isolated from the deep subsurface. Journal of Industrial Microbiology 17: 219–227

    Article  Google Scholar 

  • Zoback MD, Emmermann R (eds) (1994) Scientific Rationale for the Establishment of an International Program of Continental Scientific Drilling, Potsdam, International Lithosphere Program, Coordinated Committee Continental Drilling (CC4) 150 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horsfield, B., Kieft, T.L., GeoBiosphere Group. (2007). The GeoBiosphere. In: Harms, U., Koeberl, C., Zoback, M.D. (eds) Continental Scientific Drilling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68778-8_4

Download citation

Publish with us

Policies and ethics