Skip to main content

Continental Drilling and the Study of Impact Craters and Processes — an ICDP Perspective

  • Chapter
Continental Scientific Drilling

Abstract

Currently about 170 impact craters are known on Earth; about one third of those structures are not exposed on the surface and can only be studied by geophysics or drilling. The impact origin of geological structures can only be confirmed by petrographic and geochemical studies; thus, it is of crucial importance to obtain samples of subsurface structures. In addition, structures that have surface exposures commonly require drilling and drill cores to obtain information of the subsurface structure, to provide ground-truth for geophysical studies, and to obtain samples of rock types not exposed at the surface. For many years, drilling of impact craters was rarely done in dedicated projects, mainly due to the high cost involved. Structures were most often drilled for reasons unrelated to their impact origin. In the former Soviet Union a number of impact structures were drilled for scientific reasons, but in most of these cases the curation and proper care of the cores was not guaranteed.

More recently the International Continental Scientific Drilling Program (ICDP) has supported projects to study impact craters. The first ICDPsupported study of an impact structure was the drilling into the 200-kmdiameter, K-T boundary age, subsurface Chicxulub impact crater, Mexico, which occurred between December 2001 and February 2002. The core retrieved from the borehole Yaxcopoil-1, 60 km SSW from the center of the structure, reached a depth of 1511 m and intersected 100 m of impact melt breccia and suevite, which has been studied by an international team. From June to October 2004, the 10.5 km Bosumtwi crater, Ghana, was drilled within the framework of an ICDP project, to obtain a complete 1 million year paleoenvironmental record in an area for which only limited data exist, and to study the subsurface structure and crater fill of one of the best preserved large, young impact structures. From September to December 2005, the main part of another ICDP-funded drilling project was conducted, at the 85-km-diameter Chesapeake Bay impact structure, eastern USA, which involved drilling to a depth of 1.8 km. In 2008, it is likely that the El’ygytgyn structure (Arctic Russia) will be drilled as well. So far only few craters have been drilled — not enough to gain a broad understanding of impact crater formation processes and consequences.

In this chapter we summarize the current status of scientific drilling at impact craters, and provide some guidance and suggestions about future drilling projects that are relevant for impact research. Points we cover include: what is the importance of studying impact craters and processes, why is it important to drill impact craters or impact crater lakes, which important questions can be answered by drilling, which craters would be good targets and why; is there anything about the impact process, or of impact relevance, that can be learned by drilling outside any craters; what goals should be set for the future; how important is collaboration between different scientific fields? In the following report, we first briefly discuss the importance of impact cratering, then summarize experience from past drilling projects (ICDP and others), and finally we try to look into the future of scientific drilling of impact structures.

prepared with the help of the ICDP impact crater working group (see acknowledgments)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreoli MAG, Ashwal LD, Hart RJ, Smith CB, Webb SJ, Tredoux M, Gabrielli F, Cox RM, Hambleton-Jones BB (1995) The impact origin of the Morokweng ring structure, southern Kalahari, South Africa [abs.]. Centennial Geocongress, Johannesburg, Geological Society of South Africa, 541–544

    Google Scholar 

  • Andreoli MAG, Ashwal LD, Hart RJ, Huizenga JM (1999) A Ni-and PGEenriched quartz norite impact melt complex in the Late Jurassic Morokweng impact structure, South Africa. In: Dressler BO, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II, Geological Society of America Special Paper 339: 91–108

    Google Scholar 

  • Artemieva N, Karp T, Milkereit B (2004) Investigating the Lake Bosumtwi impact structure: Insight from numerical modeling. Geochemistry, Geophysics and Geosystems 5, 20 pp, doi: 10.1029/2004GC000733

    Google Scholar 

  • Blum JD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Schuraytz BC, Sharpton VL (1993) Isotopic comparison of KT boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364: 325–327

    Article  Google Scholar 

  • Boden A, Eriksson KG (eds) (1988) Deep Drilling in Crystalline Bedrock, vol 1, Springer-Verlag, New York, 364 pp

    Google Scholar 

  • Brandt D, Holmes H, Reimold WU, Paya BK, Koeberl C, Hancox PJ (2002) Kgagodi Basin: The first impact structure recognized in Botswana. Meteoritics and Planetary Science 37: 1765–1779

    Google Scholar 

  • Brenan RL, Peterson BL, Smith HJ (1975) The origin of Red Wing Creek structure: McKenzie county, North Dakota. Wyoming Geological Association Earth Science Bulletin 8, 41 pp

    Google Scholar 

  • Brigham-Grette J (2002) Elgygytgyn Lake Workshop Report: Science Results and Plans for Deep Drilling; International Continental Drilling Program (ICDP): Department of Geosciences, University of Massachusetts, Amherst, 72 pp

    Google Scholar 

  • Brink MC, Waanders FB, Bisschoff AA (1997) Vredefort: A model for the anatomy of an astrobleme. Tectonophysics 270: 83–114

    Article  Google Scholar 

  • Carrigy MA, Short MN (1968) Evidence of shock metamorphism in rocks from the Steen River structure, Alberta. In: French BM, Short NM (eds) Shock Metamorphism of Natural Materials, Mono Book Corp., Baltimore, MD, pp 367–378

    Google Scholar 

  • Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: Assessing the hazard. Nature 367: 33–40

    Article  Google Scholar 

  • Claeys P, Heuschkel S, Lounejeva-Baturina E, Sanchez-Rubio G, Stöffler D (2003) The suevite of drill hole Yucatán 6 in the Chicxulub impact crater. Meteoritics and Planetary Science 38: 1299–1317

    Google Scholar 

  • Collins GS, Melosh HJ, Morgan JV, Warner MR (2002) Hydrocode simulations of the Chicxulub crater collapse and peak ring formation. Icarus 157: 24–33

    Article  Google Scholar 

  • Corner B, Reimold WU, Brandt D, Koeberl C (1997) Morokweng impact structure, Northwest province, South Africa: Geophysical imaging and some preliminary shock petrographic studies. Earth and Planetary Science Letters 146: 351–364

    Article  Google Scholar 

  • Dence MR (1968) Shock zoning at Canadian craters: Petrography and structural implications. In: French BM, Short NM (eds) Shock Metamorphism of Natural Materials, Mono Book Corporation, Baltimore, MD, pp 169–184

    Google Scholar 

  • Dence MR, Innes MJS, Beals CS (1965) On the probable meteorite origin of the Clearwater Lakes, Quebec. Journal of the Royal Astronomical Society of Canada 59: 13–22

    Google Scholar 

  • Dence MR, Innes MJS, Robertson PB (1968) Recent geological and geophysical studies of Canadian craters. In: French BM, Short NM (eds) Shock Metamorphism of Natural Materials, Mono Book Corp., Baltimore, MD, pp 339–362

    Google Scholar 

  • Deutsch A, Masaitis VL, Pevzner LA (eds) (2007) Deep Drilling in the Puchezh-Katunki Impact Structure. Impact Studies, Springer, Heidelberg, in preparation.

    Google Scholar 

  • Dressler BO, Sharpton VL, Schuraytz BC (1998) Shock metamorphism and shock barometry at a complex impact structure: Slate Islands, Canada. Contributions to Mineralogy and Petrology 130: 275–287

    Article  Google Scholar 

  • Dressler BO, Sharpton VL, Morgan J, Buffler R, Moran D, Smit J, Stöffler D, Urrutia-Fucugauchi J (2003) Investigating a 65-Ma-old smoking gun: Deep Drilling of the Chicxulub Impact Structure. EOS, Transactions of the American Geophysical Union 84: 125–131

    Google Scholar 

  • Dressler BO, Sharpton VL, Schwandt CS, Ames D (2004) Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: Petrography, geochemistry, and depositional environment. Meteoritics and Planetary Science 39: 857–878

    Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) Mjølnir structure: An impact crater in the Barents Sea. Geology 24: 779–782

    Article  Google Scholar 

  • Ebbing J, Janle P, Koulouris J, Milkereit B (2001) 3D gravity modelling of the Chicxulub impact structure. Planetary and Space Science 49: 599–609

    Article  Google Scholar 

  • Ezeji-Okoye S (1985) The origin of the Eagle Butte structure, Eagle Butte, Alberta Canada: Unpublished Report for Pan Canadian Petroleum, 75 pp

    Google Scholar 

  • French BM (1998) Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution 954, Lunar and Planetary Institute, Houston, 120 pp

    Google Scholar 

  • Geologica Bavarica (1977) Ergebnisse der Ries-Forschungsbohrung 1973: Struktur des Kraters und Entwicklung des Kratersees. Geologica Bavarica 75, 470 pp

    Google Scholar 

  • Gibson RL, Reimold WU (2001) The Vredefort Impact Structure, South Africa (The scientific evidence and a two-day excursion guide). Council for Geoscience, Memoir 92, 110 pp

    Google Scholar 

  • Gibson RL, Reimold WU (2005) Shock pressure distribution in the Vredefort impact structure, South Africa. In: Kenkmann T, Hörz F, Deutsch A (eds) Large Meteorite Impacts and Planetary Evolution III. Geological Society of America Special Paper 384: 329–349

    Google Scholar 

  • Glass BP, Kent DV, Schneider DA, Tauxe L (1991) Ivory Coast microtektite strewn field: Description and relation to the Jaramillo geomagnetic event. Earth and Planetary Science Letters 107: 182–196

    Article  Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reimold WU, Browning JV, Cockell CS, Dypvik H, Edwards LE, Horton JW Jr, McLaughlin PP, Ormö J, Plescia JB, Powars DS, Sanford WE, Self-Trail JM, and Voytek MA (2006a) Preliminary site report for the 2005 ICDP-USGS deep corehole in the Chesapeake Bay impact crater. Lunar and Planetary Science 37, abstract #1713 (CD-ROM).

    Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reimold WU, Cockell CS, Horton JW Jr, Sanford WE, Voytek MA (2006b) Deep Coring Completed in the Chesapeake Bay Impact Structure. EOS Transactions of the American Geophysical Union 87: 349, 355

    Google Scholar 

  • Grieve RAF (1978) The melt rocks at Brent Crater, Ontario, Canada. Proceedings of the 9th Lunar and Planetary Science Conference, Pergamon Press, New York, pp 2579–2608

    Google Scholar 

  • Grieve RAF (1988) The Haughton impact structure: summary and synthesis of the results of the HISS Project. Meteoritics 23: 249–254

    Google Scholar 

  • Grieve RAF (2005) Economic natural resource deposits at terrestrial impact structures. In: McDonald I, Boyce AJ, Butler IB, Herrington RJ, Polya DA (eds) Mineral Deposits and Earth Evolution, Geological Society of London Special Publication 248: 1–29

    Google Scholar 

  • Grieve RAF, Cintala MJ (1981) A method for estimating the initial impact conditions of terrestrial cratering events exemplified by its application to Brent crater, Ontario. Proceedings of the 12th Lunar and Planetary Science Conference, pp 1607–1621

    Google Scholar 

  • Grieve RAF, Garvin JB (1984) A geometric model for excavation and modification at terrestrial simple impact craters. Journal of Geophysical Research 89: 11,561–11,572

    Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. International Geology Review 36: 105–151

    Article  Google Scholar 

  • Grieve RAF, Pilkington M (1996) The geophysical signature of terrestrial impacts. AGSO Journal of Australian Geology and Geophysics 16: 399–420

    Google Scholar 

  • Grieve RAF, Robertson PB (1976) Variations in shock deformation at the Slate Islands impact structure, Lake Superior, Canada. Contributions to Mineralogy and Petrology 58: 37–49

    Article  Google Scholar 

  • Grieve RAF, Therriault AM (2000) Vredefort, Sudbury, Chicxulub: Three of a kind? Annual Reviews of Earth and Planetary Science 28: 305–338

    Article  Google Scholar 

  • Grieve RAF, Therriault AM (2004) Observations at terrestrial impact structures: Their utility in constraining crater formation. Meteoritics and Planetary Science 39: 199–216

    Google Scholar 

  • Grieve RAF, Garvin JB, Coderre JM, Rupert J (1989) Test of a geometric model for the modification stage of simple impact crater development. Meteoritics 24: 83–88

    Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteoritics and Planetary Science 31: 6–35

    Google Scholar 

  • Grieve RAF, Therriault AM, Kreis LK (1998) Impact structures of the Western Sedimentary Basin of North America: New discoveries and hydrocarbon resources. Eighth International Williston Basin Symposium, Saskatchewan Geological Survey Special Publication No 13, pp 189–201

    Google Scholar 

  • Gurov E, Koeberl C (2004) Shocked rocks and impact glasses from the Elgygytgyn impact structure, Russia. Meteoritics and Planetary Science 39: 1495–1508

    Google Scholar 

  • Hale WS, Grieve RAF (1982) Volumetric analysis of complex lunar craters: Implications for basin ring formation. Proceedings, 13th Lunar and Planetary Science Conference. Journal of Geophysical Research 87(supplement): A65–A76

    Google Scholar 

  • Halliday I, Griffin AA (1967) Summary of drilling at the West Hawk Lake crater. Journal of the Royal Astronomical Society of Canada 61: 1–8

    Google Scholar 

  • Hart RJ, Andreoli MAG, Smith CB, Otter ML, Durrheim R (1990) Ultramafic rocks in the centre of the Vredefort Structure: Possible exposure of the upper mantle. Chemical Geology 82: 233–248

    Article  Google Scholar 

  • Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort structure, South Africa. Tectonophysics 287: 1–20

    Article  Google Scholar 

  • Henkel H, Reimold WU (2002) Magnetic model of the central uplift of the Vredefort impact structure, South Africa. Journal of Applied Geophysics 51: 43–62

    Article  Google Scholar 

  • Hische R (1994) Clearwater impact structure, Quebec, Canada: Modeling of the impact conditions (abstract). Meteoritics 29: 473–474

    Google Scholar 

  • Hörz F, Ostertag R, Rainey DA (1983) Bunte Breccia of the Ries: continuous deposits of large impact craters. Reviews of Geophysics and Space Physics 21: 1667–1725

    Google Scholar 

  • Innes MJS, Pearson WJ, Geuer JW (1964) The Deep Bay crater. Ottawa Dominion Observatory Publications 31: 19–52

    Google Scholar 

  • Ivanov BA, Artemieva NA (2002) Numerical modeling of the formation of large impact craters. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond, Geological Society of America Special Paper 356: 619–630

    Google Scholar 

  • Ivanov BA, Kocharyan GG, Kostuchenko VN, Kirjakov AF, Pevzner LA (1996) Puchezh-Katunki impact crater: Preliminary data on recovered core block structure [abs.]. Lunar and Planetary Science 27: 589–598

    Google Scholar 

  • Jansa LF, Pe-Piper G (1987) Identification of an underwater extraterrestrial impact crater. Nature 327: 612–614

    Article  Google Scholar 

  • Jansa LF, Pe-Piper G, Robertson PB, Friedenreich O (1989) Montagnais: A submarine impact structure on the Scotian shelf, eastern Canada. Geological Society of America Bulletin 101: 450–463

    Article  Google Scholar 

  • Johnson K, Campbell J (eds) (1997) The Ames Structure and Similar Features, Oklahoma Geological Survey Circular 100: 396 pp

    Google Scholar 

  • Karp T, Milkereit B, Janle P, Danuor SK, Pohl J, Berckhemer H, Scholz CA (2002) Seismic investigation of the Lake Bosumtwi impact crater: preliminary results. Planetary and Space Science 50: 735–743

    Article  Google Scholar 

  • Katongo C, Koeberl C, Witzke BJ, Hammond RH, Anderson RR (2004) Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure. Meteoritics and Planetary Science 39: 31–51

    Google Scholar 

  • Kieffer SW, Simonds CH (1980) The role of volatiles and lithology in the impact cratering process. Reviews of Geophysics and Space Physics 18: 143–181

    Google Scholar 

  • Koeberl C (1998) Identification of meteoritical components in impactites. In: Grady MM, Hutchison R, McCall GJH, Rothery DA (eds) Meteorites: Flux with Time and Impact Effects. Geological Society of London, Special Publication 140: 133–152

    Google Scholar 

  • Koeberl C (2001) The sedimentary record of impact events. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of Extraterrestrial Matter throughout Earth’s History, Kluwer Academic/Plenum Publishers, pp 333–378

    Google Scholar 

  • Koeberl C (2002) Mineralogical and geochemical aspects of impact craters. Mineralogical Magazine 66: 745–768

    Article  Google Scholar 

  • Koeberl C, Anderson RR (eds) (1996) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America, Special Paper 302. Boulder, USA, 468 pp

    Google Scholar 

  • Koeberl C, MacLeod KG (eds) (2002) Catastrophic events and mass extinctions: Impacts and beyond. Geological Society of America, Special Paper 356. Boulder, USA, 746 pp

    Google Scholar 

  • Koeberl C, Martinez-Ruiz F (2003) The stratigraphic record of impact events: A short overview. In: Koeberl C, Martinez-Ruiz F (eds) Impact Markers in the Stratigraphic Record. Impact Studies, vol. 3, Springer, Heidelberg, p 1–40

    Google Scholar 

  • Koeberl C, Reimold WU (2003) Geochemistry and petrography of impact breccias and target rocks from the 145 Ma Morokweng impact structure, South Africa. Geochimica et Cosmochimica Acta 67: 1837–1862

    Article  Google Scholar 

  • Koeberl C, Reimold WU (2005) Bosumtwi impact crater, Ghana (West Africa): An updated and revised geological map, with explanations. Jahrbuch der Geologischen Bundesanstalt, Wien 145: 31–70 (plus one map)

    Google Scholar 

  • Koeberl C, Reimold WU, Brandt D (1996) Red Wing Creek structure, North Dakota: Petrographical and geochemical studies, and confirmation of impact origin. Meteoritics and Planetary Science 31: 335–342.

    Google Scholar 

  • Koeberl C, Reimold WU, Kelley SP (2001) Petrography, geochemistry, and argon-39/argon-40 ages of impact melt rocks and breccias from the Ames impact structure, Oklahoma: The Nicor Chestnut 18-4 drill core. Meteoritics and Planetary Science 36: 651–669

    Google Scholar 

  • Koeberl C, Milkereit B, Overpeck JT, Scholz CA, Peck J, King J (2005) The 2004 ICDP Bosumtwi Impact Crater, Ghana, West Africa, drilling project: A first report. Lunar and Planetary Science 36: abstract #1830 (CD-ROM)

    Google Scholar 

  • Koeberl C, Milkereit B, Overpeck JT, Scholz CA, Reimold WU, Amoako PYO, Boamah D, Claeys P, Danuor S, Deutsch A, Hecky RE, King J, Newsom H, Peck J, Schmitt DR (2006) An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi impact crater, Ghana, drilling project-An overview. Lunar and Planetary Science 37: abstract #1859 (CD-ROM).

    Google Scholar 

  • Kring DA (2005) Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (∼24 km) and Chicxulub (∼180 km) impact craters. Chemie der Erde 65: 1–46

    Article  Google Scholar 

  • Maier WD, Andreoli MAG, McDonald I, Higgins MD, Boyce AJ, Shukolyukov A, Lugmair GW, Ashwal LD, Graser P, Ripley EM, Hart RJ (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441: 203–206

    Article  Google Scholar 

  • Masaitis VL (1998) Popigai crater: Origin and distribution of diamond-bearing impactites. Meteoritics and Planetary Science 33: 349–359

    Google Scholar 

  • Masaitis VL (1999) Impact structures of northeastern Eurasia: the territories of Russia and adjacent countries. Meteoritics and Planetary Science 34: 691–711

    Google Scholar 

  • Masaitis VL, Danilin AN, Maschak MS, Raykhlin AI, Selivanovskaya TV, Shadenkov YM (1980) The Geology of Astroblemes (in Russian). Leningrad, Nedra, 231 pp

    Google Scholar 

  • Melles M, Minyuk P, Brigham-Grette J, Niessen F (2003) Successful completion of pre-site survey for deep-drilling at Elgygytgyn crater lake. EOS, Transactions of the American Geophysical Union 84(46): F896

    Google Scholar 

  • McCabe HR (1977) GS-18 stratigraphic core hole program. Report of field activities, 1977. Manitoba Department of Mines, Resources and Environment Management, Mineral Resources Division, pp 93–96

    Google Scholar 

  • McCabe HR (1983) GS-22 stratigraphic mapping and stratigraphic and industrial minerals core hole program. Mineral Resources Division, Report of Field Activities, pp 122–130

    Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization: A new geological process. Journal of Geophysical Research 84: 7513–7520

    Google Scholar 

  • Melosh HJ (1989) Impact Cratering. A Geologic Process. New York: Oxford University Press, 245 pp

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annual Reviews of Earth and Planetary Sciences 27: 385–415

    Article  Google Scholar 

  • Milton DJ, Barlow BC, Brown AR, Moss FJ, Manwaring EA, Sedmik ECE, Young GA, Van Son J (1996) Gosses Bluff-a latest Jurassic impact structure, central Australia. Part 2: seismic, magnetic, and gravity studies. AGSO Journal of Australian Geology and Geophysics 16: 487–527

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact Stratigraphy: The Italian Record. Lecture Notes in Earth Sciences, vol 93, Springer Verlag, Heidelberg, 364 pp

    Google Scholar 

  • Morgan J, Warner M, Urrutia-Fucugauchi J, Gulick S, Christeson G, Barton P, Rebolledo-Vieyra M, Melosh J (2005) Chicxulub crater seismic survey prepares way for future drilling. EOS, Transactions of the American Geophysical Union 86: 325–328

    Google Scholar 

  • Morgan J, Warner M, Grieve R (2002) Geophysical constraints on the size and structure of the Chicxulub impact crater. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond, Geological Society of America Special Paper 356: 39–46

    Google Scholar 

  • Nolan M, Liston G, Prokein P, Brigham-Grette J, Sharpton VL, Huntzinger R (2003) Analysis of lake ice dynamics and morphology on Lake Elgygytgyn, NE Siberia, using synthetic aperture radar (SAR) and Landsat. Journal of Geophysical Research 108: 8162, doi: 10.1029/2001JD000934

    Article  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1993) Planetary cratering mechanics. Journal of Geophysical Research 98: 17011–17028

    Article  Google Scholar 

  • Offield TW, Pohn HA (1977) Deformation at the Decaturville impact structure, Missouri. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and Explosion Cratering, Pergamon Press, New York, pp 321–341.

    Google Scholar 

  • Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth and Planetary Science Letters 194: 17–29

    Article  Google Scholar 

  • Palme H, Goebel E, Grieve RAF (1979) The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec). Proceedings of the 10th Lunar and Planetary Science Conference, Pergamon Press, New York, pp 2465–2492

    Google Scholar 

  • Peck JA, Green RR, Shanahan T, King JW, Overpeck JT, Scholz CA (2004) A magnetic mineral record of Late Quaternary tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeography, Palaeoclimatology, Palaeoecology 215: 37–57

    Article  Google Scholar 

  • Peck J, Koeberl C, King J, Milkereit B, Overpeck J, Scholz CA (2005) The Lake Bosumtwi drilling project: Initial Report. Geological Society of America, Limnogeology Division Newsletter 2(2): 3–7

    Google Scholar 

  • Pike RJ (1985) Some morphometric systematics of complex impact structures. Meteoritics 20: 49–68

    Google Scholar 

  • Pike RJ (1977) Size-dependence in the shape of fresh impact craters on the Moon. In: Roddy DJ, Pepin RO, Merill RB (eds) Impact and Explosion Cratering, New York, Pergamon Press, pp 489–509

    Google Scholar 

  • Plado J, Pesonen LJ, Koeberl C, Elo S (2000) The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteoritics and Planetary Science 35: 723–732

    Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake Bay Crater: Geology and Geophysics of a Late Eocene Submarine Impact Structure. Impact Studies Series vol. 4, Springer-Verlag, Berlin-Heidelberg, 522 pp

    Google Scholar 

  • Redeker H-J, Stöffler D (1988) The allochthonous polymict breccia layer of the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 185–196

    Google Scholar 

  • Reimold WU, Gibson RL (2005) “Pseudotachylites” in large impact structures. In: Koeberl C, Henkel H (eds) Impact Tectonics, Springer Verlag, Berlin-Heidelberg-New York, pp 1–53

    Chapter  Google Scholar 

  • Reimold WU, Koeberl C, Brandstätter F, Kruger FJ, Armstrong RA, Bootsman C (1999) Morokweng impact structure, South Africa: Geologic, petrographic, and isotopic results, and implications for the size of the structure. In: Dressler BO, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution II, Geological Society of America Special Paper 339: 61–90

    Google Scholar 

  • Reimold WU, Armstrong RA, Koeberl C (2002) A deep drillcore from the Morokweng impact structure, South Africa: petrography, geochemistry, and constraints on the crater size. Earth and Planetary Science Letters 201: 221–232

    Article  Google Scholar 

  • Reimold WU, Koeberl C, Gibson RL, Dressler BO (2005) Economic mineral deposits in impact structures. In Koeberl C, Henkel H (eds) Impact Tectonics, Springer Verlag, Berlin-Heidelberg-New York, pp 479–552

    Chapter  Google Scholar 

  • Robb LJ, Robb VM (1998) Gold in the Witwatersrand Basin. In: Wilson MGC, Anhaeusser CR (eds) The Mineral Resources of South Africa, Council for Geoscience, Pretoria, Handbook 16: 294–349

    Google Scholar 

  • Robertson PB, Grieve RAF (1977) Shock attenuation at terrestrial impact structures. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and Explosion Cratering, Pergamon Press, New York, pp 687–702

    Google Scholar 

  • Roest WR, Pilkington M (1994) Restoring post-impact deformation at Sudbury: A circular argument. Geophysical Research Letters 21: 959–962

    Article  Google Scholar 

  • Ryder G, Fastovsky D, Gartner S (eds) (1996) The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307, 569 pp

    Google Scholar 

  • Sandbakken PT (2002) A geological investigation of the Mjølnir Crater core (7329/03-U-01), with emphasis on shock metamorphosed quartz. Master’s thesis, University of Oslo, 142 pp

    Google Scholar 

  • Scott D, Hajnal Z (1988) Seismic signature of the Haughton structure. Meteoritics 23: 239–247

    Google Scholar 

  • Scholz CA, Karp T, Brooks KM, Milkereit B, Amoako PYO, Arko JA (2002) Pronounced central uplift identified in the Bosumtwi impact structure, Ghana, using multichannel seismic reflection data. Geology 30: 939–942

    Article  Google Scholar 

  • Short NM (1970) Anatomy of a meteorite impact crater: West Hawk Lake, Manitoba, Canada. Geological Society of America Bulletin 81: 609–648

    Article  Google Scholar 

  • Spray JG, Butler HR, Thompson LM (2004) Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modelling. Meteoritics and Planetary Science 39: 287–301

    Google Scholar 

  • Spudis PD (1993) The Geology of Multi-Ring Basins. Cambridge University Press, Cambridge, 263 pp

    Google Scholar 

  • St.John BE (1968) Paleolacustrine arenites in the Holleford meteorite crater, Ontario. Canadian Journal of Earth Sciences 5: 935–943

    Google Scholar 

  • Stöffler D, Grieve RAF (1994) Classification and nomenclature of impact metamorphic rocks: A proposal to the IUGS subcommission on the systematics of metamorphic rocks. In: Montanari A, Smit J (eds) Post-Östersund Newsletter, European Science Foundation (ESF) Scientific Network on Impact Cratering and Evolution of Planet Earth, Strasbourg, pp 9–15

    Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory. Meteoritics 29: 155–181

    Google Scholar 

  • Stöffler D, Ewald U, Ostertag R, Reimold WU (1977) Research drilling Nördlingen 1973 (Ries): composition and texture of polymict impact breccias. Geologica Bavarica 75: 163–189

    Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution paleoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110: 23–37

    Article  Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) The Vredefort Structure: original size and significance for geological evolution of the Witwatersrand Basin. Meteoritics and Planetary Science 32: 71–77

    Google Scholar 

  • Tona F, Alonso D, Svab M (1985) Geology and mineralization in the Carswell structure-A general approach. Geological Association of Canada, Special Paper 29: 1–18

    Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik, H (2002) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields, Impact Studies vol. 2, Springer Verlag, Berlin-Heidelberg, pp 307–321

    Google Scholar 

  • Tuchscherer MG, Reimold WU, Koeberl C, Gibson RL, de Bruin D (2004a) First petrographic results on impactites from the Yaxcopoil-1 borehole, Chicxulub Structure, Mexico. Meteoritics and Planetary Sciences 39: 899–930

    Google Scholar 

  • Tuchscherer MG, Reimold WU, Koeberl C, Gibson RL (2004b) Major and trace element characteristics of impactites from the Yaxcopoil-1 borehole, Chicxulub Structure, Mexico. Meteoritics and Planetary Science 39: 955–978

    Google Scholar 

  • Urrutia-Fucugauchi J, Marin L, Trejo-Garcia A (1996) UNAM Scientific drilling program of Chicxulub impact structure-Evidence for a 300 kilometer crater diameter. Geophysical Research Letters 23: 1565–1568

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Morgan J, Stöffler D, Claeys P (2004) The Chicxulub Scientific Drilling Project (CSDP). Meteoritics and Planetary Science 39: 787–790

    Article  Google Scholar 

  • Whitehead J, Grieve RAF, Spray JG (2002) The petrology and mineralogy of impact melt rocks from the Popigai impact structure, Siberia. Meteoritics and Planetary Science 37: 623–647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koeberl, C., Milkereit, B. (2007). Continental Drilling and the Study of Impact Craters and Processes — an ICDP Perspective. In: Harms, U., Koeberl, C., Zoback, M.D. (eds) Continental Scientific Drilling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68778-8_3

Download citation

Publish with us

Policies and ethics