Skip to main content

Modeling of Curved Boundaries in the Finite-Difference Time-Domain Method using a Lagrangian Approach

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 121))

Abstract

We present a Lagrangian approach for increasing the accuracy of the Finite-Difference Time-Domain method in modeling electromagnetic wave interactions in geometries involving curved boundaries. The methodology provides for a mapping of the physical computational domain onto a reference domain with all its boundaries parallel to a Cartesian coordinate system. The Lagrangian formulation offers a convenient way to define a modified set of Maxwell’s equations on the reference domain. This modified set of equations is then discretized using the staggered Cartesian grids of the Yee’s lattice. The attributes of the method are demonstrated through its application to the calculation of the eigenfrequencies of a two-dimensional metallic resonator and the transmission properties of a two-dimensional periodic structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MEFiSTo (Multi-purpose Electromagnetic Field Simulation Tool). Faustus Scientific Corporation, Victoria, B.C., Canada, 2007. http://www.faustcorp.com.

    Google Scholar 

  2. A. C. Cangellaris, C.-C. Lin, and K. K. Mei. Point-matched time domain finite element methods for electromagnetic radiation and scattering. IEEE Trans. Antenn. Propag., 35:1160–1173, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. C. Cangellaris and D. B. Wright. Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans. Antenn. Propag., 39:1518–1525, Oct. 1991.

    Google Scholar 

  4. D. S. Chandrasekharaiah, and L. Debnath. Continuum Mechanics. Academic Press, San Diego, 1994.

    MATH  Google Scholar 

  5. R. E. Collin. Foundations for Microwave Engineering. McGraw-Hill, New York, 1966.

    Google Scholar 

  6. R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element Analysis. John Wiley, New York, 2001.

    Google Scholar 

  7. C. Fumeaux, D. Baumann, and R. Vahldieck. Finite-volume time-domain analysis of a cavity-backed archimedean spiral antenna. IEEE Trans. Antenn. Propag., 54:844–851, Mar. 2006.

    Google Scholar 

  8. R. F. Harrington. Time Harmonic Electromagnetic Fields. John Wiley, New York, 2001.

    Google Scholar 

  9. W. J. R. Hoefer. The transmission line matrix method – theory and applications. IEEE Trans. Microw. Theory Tech., 33:882–893, 1985.

    Article  Google Scholar 

  10. R. Holland. Finite difference solutions of Maxwell’s equations in generalized nonorthogonal coordinates. IEEE Trans. Nucl. Sci., 30:4589–4591, 1983.

    Article  Google Scholar 

  11. G. Li and N. R. Aluru. A Lagrangian approach for electrostatic analysis of deformable conductors. J. Microelectromech. Syst., 11:245–254, 2002.

    Article  Google Scholar 

  12. R. M. Mäkinen, H. De Gersem, T. Weiland, and M. A. Kivikoski. Modeling of lossy curved surfaces in 3-D FIT/FDTD techniques. IEEE Trans. Antenn. Propag., 54:3490–3498, Nov. 2006.

    Google Scholar 

  13. K. K. Mei, A. Cangellaris, and D. J. Angelakos. Conformal time domain finite difference method. Radio Sci., 19:1145–1147, 1984.

    Article  Google Scholar 

  14. J. A. Russer, P. S. Sumant, and A. C. Cangellaris. A Lagrangian approach for the handling of curved boundaries in the finite-difference time-domain method. IEEE MMT-S International Microwave Symposium, pages 717–720, June 2007.

    Google Scholar 

  15. A. Taflove and S. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston, 2005.

    Google Scholar 

  16. K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag., 14:302–307, May 1966.

    Google Scholar 

  17. W. Yu, Y. Liu, T. Su, N.-T. Huang, and R. Mittra. A robust parallel conformal finite-difference time-domain processing package using the MPI library. IEEE Antenn. Propag. Mag., 47:39–59, June 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Russer, J.A., Sumant, P.S., Cangellaris, A.C. (2008). Modeling of Curved Boundaries in the Finite-Difference Time-Domain Method using a Lagrangian Approach. In: Russer, P., Siart, U. (eds) Time Domain Methods in Electrodynamics. Springer Proceedings in Physics, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68768-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68768-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68766-5

  • Online ISBN: 978-3-540-68768-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics