Skip to main content

Space Mapping Optimization and Modeling of Microwave Devices with MEFiSTo

  • Conference paper
Time Domain Methods in Electrodynamics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 121))

Abstract

We review recent developments in space mapping techniques for optimization and modeling of microwave devices. We present a general formulation of space mapping optimization algorithms as well as the standard and enhanced space mapping modeling methodologies. Application examples of optimization and modeling of microwave structures with the time-domain electromagnetic simulator MEFiSTo as a fine model evaluator are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandler J.W., Biernacki R.M., Chen S.H., Grobelny P.A., Hemmers R.H. (1994) Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech. 42: 536–544

    Google Scholar 

  2. Bandler J.W., Cheng Q.S., Nikolova N.K., Ismail M.A. (2004) Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microwave Theory Tech. 52: 378–385

    Article  Google Scholar 

  3. Bandler J.W., Cheng Q.S., Gebre-Mariam D.H., Madsen K., Pedersen F., S⊝ndergaard J. (2003) EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings. IEEE MTT-S IMS Digest. 1003–1006

    Google Scholar 

  4. Bandler J.W., Cheng Q.S., Dakroury S.A., Mohamed A.S., Bakr M.H., Madsen K., S⊝ndergaard J. (2004) Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52: 337–361

    Article  Google Scholar 

  5. Echeverria D., Hemker P.W. (2005) Space mapping and defect correction. CMAM The International Mathematical J. Comput. Methods Appl. Math. 5: 107–136

    MATH  MathSciNet  Google Scholar 

  6. Alexandrov N.M., Lewis R.M. (2001) An overview of first-order model management for engineering optimization. Optimization Eng. 2: 413–430

    Article  MATH  Google Scholar 

  7. Booker A.J., Dennis J.E., Frank P.D., Serafini D.B., Torczon V., Trosset M.W. (1999) A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization. 17: 1–13

    Article  Google Scholar 

  8. Dennis J.E., Torczon V. (1997) Managing approximation models in optimization. Multidisciplinary Design Optimization, N.M. Alexandrov and M.Y. Hussaini, eds., SIAM: Philadelphia, USA, 330–374

    Google Scholar 

  9. Leary S.J., Bhaskar A., Keane A.J. (2003) A knowledge-based approach to response surface modeling in multifidelity optimization. Global Optimization. 26: 297–319

    Article  MATH  MathSciNet  Google Scholar 

  10. Gano S.E., Renaud J.E., Sanders B. (2004) Variable fidelity optimization using a kriging based scaling function. Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Albany, New York

    Google Scholar 

  11. Simpson T.W., Peplinski J., Koch P.N., Allen J.K. (2001) Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers. 17: 129–150

    Article  MATH  Google Scholar 

  12. Queipo N.V., Haftka R.T., Shyy W., Goel T., Vaidynathan R., Tucker P.K. (2005) Surrogate based analysis and optimization. Progress in Aerospace Sciences. 41: 1–28

    Article  Google Scholar 

  13. Ismail M.A., Smith D., Panariello A., Wang Y., Yu M. (2004) EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping. IEEE Trans. Microwave Theory Tech. 52: 386–392

    Article  Google Scholar 

  14. Wu K.L., Zhao Y.J., Wang J., Cheng M.K.K. (2004) An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping. IEEE Trans. Microwave Theory Tech. 52: 393–402

    Article  Google Scholar 

  15. Amari S., LeDrew C., Menzel W. (2006) Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54: 2153–2159

    Article  Google Scholar 

  16. Dorica M., Giannacopoulos D.D. (2006) Response surface space mapping for electromagnetic optimization. IEEE Trans. Magn. 42: 1123–1126

    Article  Google Scholar 

  17. Leary S.J., Bhaskar A., Keane A.J. (2001) A constraint mapping approach to the structural optimization of an expensive model using surrogates. Optimization Eng. 2: 385–398

    Article  MATH  MathSciNet  Google Scholar 

  18. Redhe M., Nilsson L. (2002) Using space mapping and surrogate models to optimize vehicle crashworthiness design. 9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Symp., Atlanta, GA, Sept. 2002, Paper AIAA-2002-5536

    Google Scholar 

  19. Choi H.S., Kim D.H., Park I.H., Hahn S.Y. (2001) A new design technique of magnetic systems using space mapping algorithm. IEEE Trans. Magn. 37: 3627–3630

    Article  Google Scholar 

  20. Koziel S., Bandler J.W., Madsen K. (2006) A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54: 3721–3730

    Article  Google Scholar 

  21. Bandler J.W., Georgieva N., Ismail M.A., Rayas-Sánchez J.E., Zhang Q.J. (2001) A generalized space mapping tableau approach to device modeling. IEEE Trans. Microwave Theory Tech. 49: 67–79

    Article  Google Scholar 

  22. Koziel S., Bandler J.W., Mohamed A.S., Madsen K. (2005) Enhanced surrogate models for statistical design exploiting space mapping technology. IEEE MTT S IMS Digest, Long Beach, CA: 1609–1612

    Google Scholar 

  23. Cheng Q.S., Koziel S., Bandler J.W. (2006) Simplified space mapping approach to enhancement of microwave device models. Int. J. RF and Microwave Computer-Aided Eng. 16: 518–535

    Article  Google Scholar 

  24. Rautio J.C. (2004) A space mapped model of thick, tightly coupled conductors for planar electromagnetic analysis. IEEE Microwave Magazine. 5: 62–72

    Article  Google Scholar 

  25. Koziel S., Bandler J.W. (2006) Space-mapping-based modeling utilizing parameter extraction with variable weight coefficients and a data base. IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, 1763–1766

    Google Scholar 

  26. Koziel S., Bandler J.W., Madsen K. (2006) Theoretical justification of space-mapping-based modeling utilizing a data base and on-demand parameter extraction. IEEE Trans. Microwave Theory Tech. 54: 4316–4322

    Article  Google Scholar 

  27. Koziel S., Bandler J.W. (2007) Microwave device modeling using space-mapping and radial basis functions. IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii. 799–802

    Google Scholar 

  28. Zhang L., Xu J.J., Yagoub M., Ding R.T., Zhang Q.J. (2003) Neuro-space mapping technique for nonlinear device modeling and large signal simulation. IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, PA, 173–176

    Google Scholar 

  29. Devabhaktuni V.K., Chattaraj B., Yagoub M.C.E., Zhang Q.J. (2003) Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping. IEEE Trans. Microwave Theory Tech. 51: 1822–1833

    Article  Google Scholar 

  30. Rayas-Sánchez J.E. (2004) EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microwave Theory Tech. 52: 420–435

    Article  Google Scholar 

  31. Rayas-Sánchez J.E., Lara-Rojo F., Martinez-Guerrero E. (2005) A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits. IEEE Trans. Microwave Theory Tech. 53: 960–968

    Article  Google Scholar 

  32. Zhang L., Xu J., Yagoub M.C.E., Ding R., Zhang Q.J. (2005) Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microwave Theory Tech. 53: 2752–2767

    Article  Google Scholar 

  33. Koziel S., Bandler J.W., Madsen K. (2005) Towards a rigorous formulation of the space mapping technique for engineering design. Proc. Int. Symp. Circuits, Syst., ISCAS, Kobe, Japan, 5605–5608

    Google Scholar 

  34. Madsen K., S⊝ndergaard J. (2004) Convergence of hybrid space mapping algorithms. Optimization Eng. 5: 145–156

    Article  MATH  Google Scholar 

  35. MEFiSTo-3D Pro, version 4.0, Faustus Scientific Corporation, 1256 Beach Drive, Victoria, BC, V8S 2N3, Canada, 2006

    Google Scholar 

  36. Conn A.R., Gould N.I.M., Toint P.L. (2000) Trust Region Methods, MPS-SIAM Series on Optimization

    Google Scholar 

  37. Koziel S., Bandler J.W., Madsen K. (2006) Space-mapping based interpolation for engineering optimization. IEEE Trans. Microwave Theory and Tech. 54: 2410–2421

    Article  Google Scholar 

  38. Bakr M.H., Bandler J.W., Georgieva N., Madsen K. (1999) A hybrid aggressive space mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech. 47: 2440–2449

    Article  Google Scholar 

  39. Matlab, ver. 7.1, The MathWorks Inc., Natick, MA, 2005

    Google Scholar 

  40. Powell M.J.D. (1987) Radial basis functions for multivariate interpolation: a review. In Algorithms for Approximation, J.C. Mason and M.G. Cox, Eds., Clarendon Press, Oxford

    Google Scholar 

  41. Buhmann M.D., Ablowitz M.J. (2003) Radial Basis Functions: Theory and Implementations. Cambridge University

    Google Scholar 

  42. Bakr M.H., So P.P.M., Hoefer W.J.R. (2002) The generation of optimal microwave topologies using time-domain field synthesis. IEEE Trans. Microwave Theory Tech. 50: 2537–2544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koziel, S., Bandler, J.W. (2008). Space Mapping Optimization and Modeling of Microwave Devices with MEFiSTo. In: Russer, P., Siart, U. (eds) Time Domain Methods in Electrodynamics. Springer Proceedings in Physics, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68768-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68768-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68766-5

  • Online ISBN: 978-3-540-68768-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics