Skip to main content

Zukunftsstrategien für die Entdeckung neuer Antidepressiva

  • Chapter
Handbuch der Psychopharmakotherapie

Auszug

Trotz jahrzehntelanger Bemühungen ist es weder der akademischen noch der industriellen Forschung gelungen, Medikamente zu entwickeln, die sich von den in den 1950-er Jahren entdeckten trizyklischen Antidepressiva (TZA) vom Imipramin-Typ grundsätzlich unterscheiden. Dabei darf der große Vorteil der heute zur Verfügung stehenden neuen Substanzen gegenüber denen der ersten Generation nicht unterschätzt werden: Die heute in erster Linie eingesetzten Antidepressiva weisen nicht mehr so gravierende Nebenwirkungen auf, v. a. sind die Folgen einer Überdosierung weit weniger gefährlich. Das klinische Profil der neuen Substanzen hat sich jedoch nicht entscheidend geändert. Wie bei den Substanzen der ersten Generation der Antidepressiva ist deren Wirklatenz zu lange und die Remissionsrate, d. h. der Anteil der Erkrankten, die unter Therapie nahezu frei von depressiven Symptomen werden, zu gering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P (2004) Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 9(3): 278–86

    Article  PubMed  CAS  Google Scholar 

  • Angst J, Sellaro R, Stassen HH, Gamma A (2005) Diagnostic conversion from depression to bipolar disorders: results of a long-term prospective study of hospital admissions. J Affect Disord 84: 149–157

    Article  PubMed  Google Scholar 

  • Berry DA (2006) A guide to drug discovery: Bayesian clinical trials. Nature Rev Drug Discov 5: 27–36

    Article  CAS  Google Scholar 

  • Bhardwaj RD, Curtis MA, Spalding KL et al (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 103(33): 12564–12568

    Article  PubMed  CAS  Google Scholar 

  • Binder E, Salyakina D, Lichtner P et al (2004) Polymorphisms in FKBPS are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genet 36: 1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Zimmer A (2005) Mutagenesis and knockout models: NK1 and substance P. Handb Exp Pharmacol (169): 143–162

    Article  PubMed  CAS  Google Scholar 

  • Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59(12): 1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Borowsky B, Durkin MM, Ogozalek K et al (2002) Antidepres sant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nature Med (8): 825–830

    Google Scholar 

  • Ceide SC, Trembleau L, Haberhauer G, Somogyi L, Lu X, Bartfai T, Rebek J Jr (2004) Synthesis of galmic a nonpeptide galanin receptor agonist. Proc Natl Acad Sci USA 101(48): 16727–16732

    Article  PubMed  CAS  Google Scholar 

  • Crochemore C, Lu J, Wu Y, Liposits Z, Sousa N, Holsboer F, Almeida OF (2005) Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry 8: 790–798

    Article  CAS  Google Scholar 

  • David DJ, Klemenhagen KC, Holick KZ et al (2007) Efficacy of the MCHR1 antagonist N-[3-([4-(3,4-difluorophenoxy)phenyl]met hyl(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther 321(1): 237–248

    Article  PubMed  CAS  Google Scholar 

  • DeBattista C, Belanoff J, Glass S et al (2006) Mifepristone versus placebo in the treatment of psychosisin patients with psychotic major depression. Biol Psychiatry. 60(12): 1343–1349

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nature Rev Neurosci 6: 463–475

    Article  CAS  Google Scholar 

  • Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 3: 126–32

    Article  Google Scholar 

  • Fleischhacker WW, Hinterhuber H, Bauer H et al (1992) A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. — Neuropsychobiology 26(1–2): 59–64

    PubMed  CAS  Google Scholar 

  • Fujimaki K, Morinobu S, Duman RS (2000) Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 22(1): 42–51

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30): 10604–10609

    Article  PubMed  CAS  Google Scholar 

  • Gerhold DL, Jensen RV, Gullans SR (2002) Better therapeutics through microarrays. Nature Genet 32 Suppl: 547–551

    Article  PubMed  CAS  Google Scholar 

  • Gesing A, Bilang-Bleuel A, Droste SK, Linthorst AC, Holsboer F, Reul JM (2001) Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. J Neurosci 21(13): 4822–4829

    PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C et al (2002) Anxiolytic-and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-relate disorders. Proc Natl Acad Sci USA 99(9): 6370–6375

    Article  PubMed  CAS  Google Scholar 

  • Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF, Britton KT (1993): Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology 8(4): 357–363

    PubMed  CAS  Google Scholar 

  • Heim C, Plotsky PM, Nemeroff CB (2004) Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology 4: 641–648

    Article  Google Scholar 

  • Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-4) antagonists to treat depression and anxiety. J Psychiatr Res 33: 181–214

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23: 477–501

    Article  PubMed  CAS  Google Scholar 

  • Ising M, Horstmann S, Kloiber S et al (2007a) Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression — a potential biomarker? Biol Psychiatry 62: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Ising M, Zimmermann US, Künzel HE et al (2007b) High-affinity CRF(1) receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology 32(9): 1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedemann K (2004) Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch Gen Psychiatry 61(12): 1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 55(8): 781–784

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y (2005) Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 7: 622–630

    Article  CAS  Google Scholar 

  • Keck ME, Welt T, Muller MB et al (2003) Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology 28(2): 235–243

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Montgomery S, Ball W et al (2006) Lack of efficacy of the substance (Pneurokinin 1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 59(3): 216–223

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14(2): 186–191

    Article  PubMed  CAS  Google Scholar 

  • Khakh B, North A (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102): 527–532

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2004) Biological robustness. Nature Rev Genet 5: 826–837

    Article  CAS  PubMed  Google Scholar 

  • Kraft J, Peters E, Slager S, Jenkins G, Reinalda M, McGrath P, Hamilton S (2006) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 61(6): 734–742

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J et al (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281(538): 1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Krömer S, Keßler M, Milfay D et al (2005) Identification of glyoxalase-1 as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 25: 4375–4384

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R (2006) The involvement of the vasopressin system in stressrelated disorders. CNS Neurol Disord Drug Targets 5(2): 167–179

    PubMed  CAS  Google Scholar 

  • Lu X, Barr AM, Kinney JW, Sanna P, Conti B, Behrens MM, Bartfai T (2005a) A role for galanin im antidepressant actions with a focus on the dorsal raphe nucleus Proc Natl Acad Sci USA 102(3): 874–879

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Mazarati A, Sanna P, Shinmei S, Bartfai T (2005b) Distribution and differential regulation of galanin receptor subtypes in rat brain: effects of seizure activity. Neuropeptides 39(3): 147–152

    Article  PubMed  CAS  Google Scholar 

  • Lucae S, Salyakina D, Barden N et al (2006) P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 15: 2438–2445

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24): 9104–9110

    PubMed  CAS  Google Scholar 

  • Mayer JP, Klumpers L, Maslam S, de Kloet ER, Joels M, Lucassen PJ (2006) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. — J Neuroendocrinol 18(8): 629–631

    Article  PubMed  CAS  Google Scholar 

  • Mirescu C, Peters JD, Noiman L, Gould E (2006) Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticolds. Proc Natl Acad Sci USA 103(50): 19170–19175

    Article  PubMed  CAS  Google Scholar 

  • Müller MB, Holsboer F (2006) Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry 59(12): 1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Müller MB, Zimmermann S, Sillaber I et al (2003) Limbic corticotropinreleasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neurosci 6: 1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Murck H. Held K, Ziegenbein M, Kunzel H, Holsboer F, Steiger A (2004) Intravenous a dministration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology 9: 1205–1211

    Article  CAS  Google Scholar 

  • Nickel T, Sonntag A, Schill J et al (2003) Clinical and neurobiological effects of tianeptine and paroxetine in major depression. J Clin Psychopharmacol 23 (2): 155–168

    Article  PubMed  CAS  Google Scholar 

  • OóDonnell J, Zhang H (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25(3): 158–163

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Erickson JC, Hollopeter G, Baraban SC, Schwartz MW (1998) Life without neuropeptideY. Recent Prog Horm Res 53: 163–199

    PubMed  CAS  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423(6938): 435–439

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo J, Wei J et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45(9): 1085–1098

    Article  PubMed  CAS  Google Scholar 

  • Redrobe JP Dumon I, Fournier A, Quirion R (2002) The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26(5): 615–624

    Article  PubMed  CAS  Google Scholar 

  • Refojo D, Echenique C, Müller M et al (2005): CRH activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA 102: 6183–6188

    Article  PubMed  CAS  Google Scholar 

  • Reul JM, Stec I, Soder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133(1): 312–320

    Article  PubMed  CAS  Google Scholar 

  • Roy M, David N, Cueva M, Glorgetti M (2007) A study of the involvement of melanin-concentrating hormone receptor 1 (MCHR1) in murine models of depression. Biol Psychiatry 61(2): 174–180

    Article  PubMed  CAS  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR et al and STAR*D Study Team (2006) Bupropion-SR sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 354(12): 1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634): 805–809

    Article  PubMed  CAS  Google Scholar 

  • Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 104(9): 3300–3305

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki T, Yoshimizu T, Chaki S (2006) Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs 20(10): 801–811

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI (2000) 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 48(8): 791–800

    Article  PubMed  CAS  Google Scholar 

  • Swanson CJ, Blackburn TP, Zhang X et al (2005) Anxiolytic-and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci USA 102(48): 17489–17494

    Article  PubMed  CAS  Google Scholar 

  • Steiger A (2003) Sleep and endocrine regulation. Front Biosci 8: s358–s376

    Article  PubMed  CAS  Google Scholar 

  • Stockmeier CA, Mahajan GJ, Konick LC et al (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56(9): 640–650

    Article  PubMed  Google Scholar 

  • Temsamani J, Vidal P (2004) The use of cell-penetrating peptides for drug delivery. Drug Discov Today 9(23): 1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressantaction. Nature Neurosci 4: 519–525

    Article  CAS  Google Scholar 

  • Uys JD, Muller CJ, Marais L, Harvey BH, Stein DJ, Daniels WM (2006) Early life trauma decreases glucocorticoid receptors in rat dentate gyrus upon adult re-stress: reversal by escitalopram. Neuroscience 137(2): 619–625

    Article  PubMed  CAS  Google Scholar 

  • van der Greef J, Hankemeier T, McBurney RN (2006) Metabolomics-based systems, biology and personalized medicine: moving towards n=1 clinical trials? Pharmacogenomics 7(7): 1087–1094

    Article  PubMed  Google Scholar 

  • Vezzani A, Sperk G, Colmers WF (1999) Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends neurosci 22(1): 25–30

    Article  PubMed  CAS  Google Scholar 

  • Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25(47): 11045–11054

    Article  PubMed  CAS  Google Scholar 

  • Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer D, Pollmächer T, Czisch M (2007) Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci 25(3): 863–871

    Article  PubMed  Google Scholar 

  • Williams AG, Girard C, Jui D, Sabina A, Katz DL (2005) S-adenosylmethionine (SAMe) as treatment for depression: a systematic review. Clin Invest Med 28(3): 132–139

    PubMed  CAS  Google Scholar 

  • Zobel AW, Nickel T, Kunzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 3: 171–181

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Holsboer, F. (2008). Zukunftsstrategien für die Entdeckung neuer Antidepressiva. In: Holsboer, F., Gründer, G., Benkert, O. (eds) Handbuch der Psychopharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68748-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68748-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20475-6

  • Online ISBN: 978-3-540-68748-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics