Skip to main content

Verhaltenspharmakologie

  • Chapter
  • 2569 Accesses

Auszug

Pharmakologie und Neurowissenschaften stehen in enger Beziehung zueinander. Pharmaka, die auf neuartige und unerwartete Weise Hirnaktivitäten und Verhalten verändern, ermöglichen einen völlig neuen Einblick in die Organisation und Arbeitsweise des Gehirns. Daher hat das Wechselspiel zwischen der Entwicklung und therapeutischen Verwendung von Psychopharmaka sowie der Aufklärung der Funktionsweise des Gehirns und der Steuerung von Verhalten entscheidend zur rasanten Entwicklung der Neurowissenschaften beigetragen, die vor etwa 50 Jahren eingesetzt hat und bis heute fortdauert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alello GL, Rita P (2000) The cost of an action potential. J Neurosci Methods 103: 145–149.

    Article  Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Brain Res Rev 52: 293–304.

    Article  CAS  Google Scholar 

  • Alfonso J, Frasch AC, Flugge G (2005) Chronic stress, depression and antidepressants: effects on gene transcription in the hippocampus. Rev Neurosci 16: 43–56.

    PubMed  CAS  Google Scholar 

  • Allison T, Cicchetti DV (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732–734.

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31: 571–591.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry, 46: 1309–1320.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H, Huttemeler PC (1990) Microdialysis — theory and application. Prog Neurobiol 35: 195–215.

    Article  PubMed  CAS  Google Scholar 

  • Berger H (1929) Über das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87: 527–570.

    Article  Google Scholar 

  • Bjorvatn B, Fagerland S, Ursin R (1998) EEG power densities (0.5–20 Hz) in different sleep-wake stages in rats. Physiol Behav 63: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8: 229–242.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: longterm potentiation in the hippocampus. Nature 361: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.

    PubMed  CAS  Google Scholar 

  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effects on sleep stages and EEG power density in man. Electroenceph Clin Neurophysiol 51: 483–493

    Article  PubMed  CAS  Google Scholar 

  • Borbely AA, Tobler I, Hanagasioglu M (1984) Effects of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Boretius S, Natt O, Watanabe T, Tammer R, Ehrenreich L, Frahm J, Michaelis T (2004) In vivo diffusion tensor mapping of the brain of squirrel, monkey, rat and mouse using single-shot STEAM MRI. MAGMA 17: 339–347

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Manahan-Vaughan D (2001) Long-term depression: a cellular basis for learning? Rev Neurosci 12: 121–140

    PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–389

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59: 1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Bliss TV, Dutrieux G, Laroche S, Errington ML (1997) Induction and duration of long-term potentiation in the hippocampus of the freely moving mouse. J Neurosci Methods 75: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Frank E, Price JC et al (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46: 1375–1387

    Article  PubMed  CAS  Google Scholar 

  • Ephron HS, Carrington P (1966) Rapid eye movement sleep and cortical homeostasis. Psychol Rev 73: 500–526.

    Article  PubMed  CAS  Google Scholar 

  • Errington ML, Bliss TV, Morris RJ, Laroche S, Davis S (1997) Long-term potentiation in awake mutantmice (letter). Nature 387: 666–667

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Schwienbacher I, Koch M (2000) Amygdaloid N-methyl-D-aspartate and gamma-aminobutyric acid (A) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 98: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Feldman R, Meyer J, Quenzer L (1997) Principles of neuropharmacology. Sinauer, Sunderland, MA

    Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298: 556–562

    Article  PubMed  CAS  Google Scholar 

  • Flügge G, van Kampen M, Meyer H, Fuchs E (2003) Alpha 2A and alpha2C-adrenoceptor regulation in the brain: alpha2A changes persist after chronic stress. Eur J Neurosci 17: 917–928

    Article  PubMed  Google Scholar 

  • Frahm J (2000) Mit kilogauss ins menschliche Gehirn. Anatomie, Stoffwechsel und Funktion. Gauss-Gesellschaft e.V. Göttingen, Mitteilungen Nr. 37, S 3–16

    Google Scholar 

  • Frederickson CJ, Rechtschaffen A (1978) Effects of sleep deprivation on awakening thresholds and sensory evoked potentials in the rat. Sleep 1: 467–476

    Google Scholar 

  • Fuchs E, Flügge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behaviour. Annu Rev Pharmacol Toxicol 43: 261–284

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 787–798

    Google Scholar 

  • Glin L, Arnaud C, Berracochea D, Galey D, Jaffard R, Gottesmann C (1991) The intermediate stage of sleep in mice. Physiol Behav 50: 951–953

    Article  PubMed  CAS  Google Scholar 

  • Gottesmann C (1996) The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci Biobehav Rev 20: 367–387

    Article  PubMed  CAS  Google Scholar 

  • Güler NF, Übeyli ED (2002) Theory and applications of biotelementry. J Med Syst 26: 159–178

    Article  PubMed  Google Scholar 

  • Hartmann EL (1973) The functions of sleep. Yale University Press, New Haven, CT

    Google Scholar 

  • Hebb DO (1949). Organization of behavior: a neuropsychological theory. Wiley, New York, p 62

    Google Scholar 

  • Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23: 1–38

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47: 1117–1134

    PubMed  CAS  Google Scholar 

  • Hölscher C (1997) Long-term potentiation: a good model for learning and memory? Prog Neuropsychopharmacol Biol Psychiatry 21: 47–68

    Article  PubMed  Google Scholar 

  • Holsboer F (1999) Molekulare Mechanismen der Depressionstherapie. In: Ganten D, Ruckpaul K (Hrsg) Erkrankungen des Zentralnervensystems. Springer, Berlin Heidelberg New York, S 273–318

    Google Scholar 

  • Holsboer F (2003) Corticotropin-releasing hormone modulators and depression. Curr Opin Investig Drugs 4: 46–50

    PubMed  CAS  Google Scholar 

  • Horn TF, Engelmann M (2001) In vivo microdialysis for nonapeptides in rat brain — a practical guide. Methods 23: 41–53

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Deboer T, Tobler I (2001) Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 84: 1888–1893

    Google Scholar 

  • Jones MW, Erringon ML, French PJ et al (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neurosci 4: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Holsboer F, Muller MB (2004) Mouse mutants for the study of corticotropin-releasing hormone receptor function: development of novel treatment strategies for mood disorders. Ann NY Acad Sci 1018: 445–457

    Article  PubMed  CAS  Google Scholar 

  • Kirby LG, Lucki I (1998) The effect of repeated exposure to forced swimming on extracellular levels of 5-hydroxytryptamine in the rat. Stress 2: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Wiltfang J, Bleich S (2004) The etiopathogenesis of schizophrenias. Pharmacopsychiatry 37 (Suppl 2): S103–S112

    Article  PubMed  CAS  Google Scholar 

  • Kramer K, Kinter L, Brockway BP, Voss HP, Remie R, Van Zutphen BL (2001) The use of radiotelementry in small laboratory animals: recent advances. Contemp Top Lab Anim Sci 40: 8–16

    PubMed  CAS  Google Scholar 

  • Lesch KP (2005) Serotonergic gene inactivation in mice: models for anxiety and aggression? Novartis Foundation Symposium 268: 111–140

    PubMed  CAS  Google Scholar 

  • Linthorst AC, Flachskamm C, Holsboer F, Reul JM (1996) Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neuroscience 72: 989–997

    Article  PubMed  CAS  Google Scholar 

  • Lister RG (1990) Ethologically based animal model of anxiety disorders. Pharmacol Ther 46: 321–340

    Article  PubMed  CAS  Google Scholar 

  • Loomis AI, Harvey EN, Hobart G (1936) Electrical potentials of the human brain. J Exp Psychol 19: 249–279

    Article  Google Scholar 

  • Ludwig M, Rittman QJ (2003) Talking back: dendritic neurotransmitter release. Trends Neurosci 26: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23: 649–711

    Article  PubMed  CAS  Google Scholar 

  • McEwen B (2002) The end of stress as we know it. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Meddis R (1983) The evolution of sleep. In: Mayes A (ed) Sleep mechanisms and functions. Van Nostrand Reinhold, London, pp 57–106

    Google Scholar 

  • Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann NY Acad Sci 1003: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi G (1972) The sleep-waking cycle. Ergeb Physiol 64: 1–165

    PubMed  CAS  Google Scholar 

  • Natt O, Watanabe T, Boretius S, Radulovic J, Frahm J, Michaelis T (2002) High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. J Neurosci Methods 120: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Ohl F, Landgraf R (2000) Tiermodell Angst. Neuro forum 4: 263–273

    Google Scholar 

  • Ohl F, Sillaber I, Binder E, Keck ME, Holsboer F (2001) Differential analysis of basal behavior and diazepam-induced alterations in C57BL/6 and BALB/c mice using the modified hole board. J Psychiatr Res 35: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Pattij T, Wood SJ, Oosting R, Sarnyai Z, Toth M (2001) The 5-HT(1A) receptor knockout mouse and anxiety. Behav Pharmacol 12: 439–450

    PubMed  CAS  Google Scholar 

  • Oswald I (1970) Sleep the great restorer. New Scientist 46: 170–172

    Google Scholar 

  • Overall KL (2000) Natural animal models of human psychiatric conditions: Assessment of mechanism and validity. Prog Neuro-Psychopharmacol Biol Psychiatr 24: 727–776

    Article  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43: 425–473

    PubMed  CAS  Google Scholar 

  • Picciotto MR (1999) Knock-out mouse models used to study neurobiological systems. Crit Rev Neurobiol 13: 103–49

    PubMed  CAS  Google Scholar 

  • Poling AD, Byrne T (eds) (2000) Introduction to behavioral pharmacology. Context Press, Reno, NV

    Google Scholar 

  • Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2: 23–33

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105: 325–350

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz A, Natt O, Watanabe T, Boretius S, Frahm J, Michaelis T (2003) Localized proton MRS of cerebral metabolite profile in different mouse strains. Magn Reson Med 49: 822–827

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Chen K (1999) MAO-A and-B gene knock-out mice exhibit distinctly different behavior. Neurobiology 7: 235–246

    PubMed  CAS  Google Scholar 

  • Shors TJ, Matzel LD (1997) Long-termpotentiation: what’s learning got to do with it? Behav Brain Sci 20: 597–655

    Article  PubMed  CAS  Google Scholar 

  • Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W (1992) Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 130: 3378–3386

    Article  PubMed  CAS  Google Scholar 

  • Storch C (2002) Validierung der lokomotorischen Aktivität als Korrelat zum Schlaf/Wach-Verhalten bei Mäusen. Diplomarbeit, München

    Google Scholar 

  • Timpel P, Spanagel R, Sillaber I et al (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet 19: 162–166

    Article  CAS  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function Nature Rev Neurosci 4: 13–25

    Article  CAS  Google Scholar 

  • Toth M (2003) 5-HT(1A) receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC (2003) Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neurscience 118: 297–310

    Article  CAS  Google Scholar 

  • van Haren F (ed) (1993) Methods in behavioral pharmacology. Elsevier, New York

    Google Scholar 

  • Watanabe T, Frahm J, Michaelis T (2004) Functional mapping of neural pathway in rodent brain in vivo using managese-enhanced three-dimensional magnetic resonance imaging. NMR Biomed 17: 554–568

    Article  PubMed  CAS  Google Scholar 

  • Weiss SM, Wadsworth G, Fletcher A, Dourish CT (1998) Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci Biobehav Rev 23: 265–271

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1991) Behavioural models in psychopharmacology. In: Willner P (ed) Behavioural models in psychopharmacology: Theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  • Zepelin H, Rechtschaffen A (1974) Mammalian sleep, longevity and energy metabolism. Brain Behav Evol 10: 425–470

    PubMed  CAS  Google Scholar 

  • Zoli M, Jansson A, Sykova E, Agnati LF, Fuxe K (1999) Volume transmission in the CNS and its relevace for neuropsychopharmacology. Trends Pharmacol Sci 20: 142–150

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GK (1996) Peptidergic transmission: from morphological correlates to functional implications. Micron 27: 35–91

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Fuchs, E., Schmitt, U., Ohl, F., Flügge, G., Wotjak, C.T., Michealis, T. (2008). Verhaltenspharmakologie. In: Holsboer, F., Gründer, G., Benkert, O. (eds) Handbuch der Psychopharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68748-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68748-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20475-6

  • Online ISBN: 978-3-540-68748-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics