Skip to main content

Neurotransmitter und Modulatoren

  • Chapter
Handbuch der Psychopharmakotherapie

Auszug

Die Signalübertragung an der chemischen Synapse beginnt mit der Freisetzung eines chemischen Überträgerstoffs, dem Neurotransmitter, an der präsynaptischen Membran, der auf der gegenüberliegenden postsynaptischen Seite an spezifische Rezeptoren bindet., Es gibt für alle bisher bekannten Neurotransmitter unterschiedliche Rezeptoren, sodass derselbe Transmitter andersartige Wirkungen an verschiedenen Synapsen hervorrufen kann. Die wichtigsten Neurotransmitter im Zentralnervensystem (ZNS) der Vertebraten werden von den Aminosäuren (AS) Glutamat, γ-Aminobuttersäure (GABA) und Glycin gebildet. Dabei werden erregende Signale durch L-Glutamat und bedingt auch durch L- und D-Aspartat vermittelt. Der wichtigste inhibitorische Neurotransmitter im ZNS ist GABA, ausgenommen das Rückenmark und der Hirnstamm, in denen schwerpunktmäßig Glycin die Inhibition vermittelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alt A, Weiss B, Ogden AM et al (2004) Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 46: 793–806

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nature Rev Neurosci 3: 728–739

    Article  CAS  Google Scholar 

  • Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97: 1600–1610

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Bettler B, Froestl W et al (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54: 247–264

    Article  PubMed  CAS  Google Scholar 

  • Brandon NJ, Jovanovic JN, Moss SJ (2002) Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid(A) receptor function and cell surface expression. Pharmacol Ther 94: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Breitinger HG, Becker CM (2002) The inhibitory glycine receptor-simple views of a complicated channel. ChemBioChem 3: 1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Brussaard AB, Wossink J, Lodder JC, Kits KS (2000) Progesterone-metabolite prevents protein kinaseC-dependent modulation of gamma-aminobutyric acid type A receptors in oxytocin neurons. Proc Natl Acad Sci USA 97: 3625–3630

    Article  PubMed  CAS  Google Scholar 

  • Calver AR, Davies CH, Pangalos M (2002) GABA(B) receptors: from monogamy to promiscuity. Neurosignals 11: 299–314

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75: 889–907

    Article  PubMed  CAS  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415: 793–798

    PubMed  CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VR, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20: 26–35

    Article  PubMed  CAS  Google Scholar 

  • Coussen F, Perrais D, Jaskolski F et al (2005) Co-assembly of two GluR6 kainate receptor splice variants within a functional protein complex. Neuron 47: 555–566

    Article  PubMed  CAS  Google Scholar 

  • Cubelos B, Gimenez C, Zafra F (2005) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15: 448–459

    Article  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M, (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy S, Kelly L, Farrant M (2006) Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 16: 288–297

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 7–61

    PubMed  CAS  Google Scholar 

  • Eulenburg V, Armsen W, Betz H, Gomeza J (2005) Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 30: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Ferrugati F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326: 483–504

    Article  CAS  Google Scholar 

  • Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Hanus C, Ehrensperger MV, Triller A (2006) Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26: 4586–4595

    Article  PubMed  CAS  Google Scholar 

  • Hassel B, Brathe A (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate J Neurosci 20: 1342–1347

    PubMed  CAS  Google Scholar 

  • Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L (2006) Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol 69: 991–997

    PubMed  CAS  Google Scholar 

  • Johnston GA (2005) GABA(A) receptor channel pharmacology. Curr Pharm Des 11: 1867–1885

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER (1994) Role of GABA(A) receptors in the actions of alcohol and alcoholism: recent advances. Alcohol Alcoholism 29: 115–129

    CAS  Google Scholar 

  • Korpi ER, Sinkkonen ST (2006) GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 109: 12–32

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Gründer G, Lüddens H (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol 67: 113–159

    Article  PubMed  CAS  Google Scholar 

  • Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABA(A) receptor. Mechanism of action and physiological significance. Progr Neurobiol 38: 379–395

    Article  CAS  Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60: 395–407

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (2005) Crystal structures of the GluRS and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45: 539–552

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Ghosal A, Dolman NP, Jane DE (2006) Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J Neurosci 26: 2852–2861

    Article  PubMed  CAS  Google Scholar 

  • McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl neurotransmitter transporters. J Neurochem 71: 1785–1803

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S (2006) The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem 98: 1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Ortells MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054

    PubMed  CAS  Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Hertz L, Huang R et al (1993) Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci 15: 367–377

    Article  PubMed  CAS  Google Scholar 

  • Pow DV, Sullivan RK, Williams SM, Scott HL, Dodd PR, Finkelstein D (2005) Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res 320: 379–392

    Article  PubMed  CAS  Google Scholar 

  • Quinlan JJ, Homanics GE, Firestone LL (1998) Anesthesia sensitivity in mice that lack the beta3 subunt of the gamma-aminobutyric acid type A receptor. Anesthesiology 88: 775–780

    Article  PubMed  CAS  Google Scholar 

  • Reynolds DS, Rosahl TW, Cirone J et al (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23: 8608–8617

    PubMed  CAS  Google Scholar 

  • Ruiz A, Sachidhanandam S, Utvik JK, Coussen F, Mulle C (2005) Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J Neurosci 25: 11710–11718

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25: 1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Slotboom DJ, Konings WN, Lolkema JS (2001) Glutamate transporters combine transporter-and channel-like features. Trends Biochem Sci 26: 534–539

    Article  PubMed  CAS  Google Scholar 

  • Soudijn W, van Wijngaarden I (2000) The GABA transporter and its inhibitors. Curr Med Chem 7: 1063–1079

    PubMed  CAS  Google Scholar 

  • Sprengel R (2006) Role of AMPA receptors in synaptic plasticity. Cell Tissue Res 326: 447–455

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19: 339–345

    Article  PubMed  CAS  Google Scholar 

  • Stryer L, Berg J, Tymoczko J (2002) Biochemistry. Freeman; New York

    Google Scholar 

  • Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABA(A) receptor subtype. J Neurosci 17: 2728–2737

    PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A (1999) The GABA paradox: multiple roles as metabolite neurotransmitter, and neurodifferentiative agent. J Neurochem 73: 1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Qu H, Sonnewald U, Shimamoto K, Schousboe A (2005) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem Int 47: 92–102

    Article  PubMed  CAS  Google Scholar 

  • Wallner M, Hanchar HJ, Olsen RW (2006) Low-dose alcohol actions on α4β3δ GABAA receptors are reversed by the behavioral alcohol antagonist Ro15–4513. Proc Natl Acad Sci USA 103: 8540–8545

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20: 204–212

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Calcada B, de Artinano A (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44: 195–208

    Article  CAS  Google Scholar 

  • Corringer P-J, Le Novère N, Changeux J-P (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40: 431–458

    Article  PubMed  CAS  Google Scholar 

  • Deken SL, Fremeau RT, Quick MW (2002) Family of sodium-coupled transporters for GABA, glycine, proline, betaine, taurine, and creatine: pharmacology, physiology and regulation. In: Reith MEA (ed) Neurotransmitter transporters. Structure, function and regulation, 2nd edn. Humana Press, Totowa, NJ, pp 193–233

    Google Scholar 

  • Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors — physiological understanding to therapeutic intervention potential. Pharmacol Ther 84: 133–156

    Article  PubMed  CAS  Google Scholar 

  • Hieble JP, Bondinell WE, Ruffolo RP (1995) Alpha-and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem 38: 3415–3444

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB (1998) Psychopharmacology of affective disorders in the 21st century. Biol Psychiatry 44: 517–525

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Haga T, Kanai H, Endou T, Ishihara I, Katsura I (2000) Identification and characterization of a high-affinity choline transporter. Nature Neurosci 3: 120

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of „ecstasy“ [3,4-methylenedioxymethamphetamine (MDMA)]: Serotonin transporters are targets for MDMA-induced serotonin-release. Proc Natl Acad Sci USA 89: 1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Schloss P, Püschel A, Betz H (1994) Neuro transmitter transporters: new members of known families. Curr Opin Cell Biol 6: 595–599

    Article  PubMed  CAS  Google Scholar 

  • Schloss P, Williams DC (1998) The serotonin transporter: a major target for antidepressant drugs. J Psychopharmacol 12: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71: 1–51

    PubMed  CAS  Google Scholar 

  • Sitte HH, Scholze P, Schloss P, Pifl C, Singer EA (2000) Characterization of carrier-mediated release in human embryonic kidney 293 cells stabely expressing the rat serotonin transporter: a superfusion study. J Neurochem 74: 1317–1324

    PubMed  CAS  Google Scholar 

  • Uphouse L (1997) Multiple serotonin receptors: too many, not enough, or just the right number? Neurosci Biobehav Rev 21: 679–698

    Article  PubMed  CAS  Google Scholar 

  • Van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98: 197–220

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Adams JB, Pyke RE, Costa J et al (1995) A double-blind, placebo-controlled study of a CCK-B an tagonist, CI-988, inpatients with generalised anxiety disorders. J Clin Psychopharmacol 15: 428–434

    Article  PubMed  CAS  Google Scholar 

  • Akiyoshi J, Moriyama T, Isogawa K et al (1996) CCK-4-induced calcium mobilization in T cells is enhanced in panic disorder. J Neurochem 66: 1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14: 76–122

    Article  PubMed  CAS  Google Scholar 

  • Ault DT, Werling LL (1998) Neuropeptide Y-mediated enhancement of NMDA-stimulated [3H] dopamine release from rat striatum by neuropeptide Y and sigma receptor ligands. Brain Res 31: 27–36

    CAS  Google Scholar 

  • Behan DP, Giordalis DE, Lovenberg T, Chalmers D, Heinrichs S, Liaw C, De Souza EB (1996) Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1: 265–277

    PubMed  CAS  Google Scholar 

  • Beinfeld MC, Garver DL (1991) Concentration of cholecystokinin in cerebrospinal fluid is decreased in psychosis: relationship to symptoms and drug response. Prog Neuro Psychopharmacol Biol Psychiatry 15: 601–609

    Article  CAS  Google Scholar 

  • Bakshi VP, Smith-Roe S, Newman SM, Grigoriadis DE, Kalin NH (2002) Reduction of stress-induced behavior by antagonism of corticotropin-releasing hormone 2 (CRH2) receptors in lateral septum or CRH1 receptors in amygdala. J Neurosci 22: 2926–2935

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Bhttacharaya A, Chakrabati A (1998) Anxiogenic activity of intraventricularly administered arginine-vasopressin in the rat. Biogen Amines 14: 367–385

    CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arc Gen Psychiatry 48(11): 996–1001

    CAS  Google Scholar 

  • Bilkei-Gorzo A, Racz I, Micheal K, Zimmer A (2002) Diminished anxiety-and depression-related behaviors in mice with selective deletion of the TAC1 Gene. J Neurosci 22: 10046–10052

    PubMed  CAS  Google Scholar 

  • Binder EB, Kinkead B, Nemeroff CB (2003) Neuropeptides. In: A Breler, PV Tran, J Herrera et al (eds) Current issues in the psychopharmacology of schizophrenia. Lippincott, Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Bondy B, Baghai TC, Minov C et al (2003) Substance P serum levels are increased in major depression: preliminary results. Biol Psychiatry 53: 538–542

    Article  PubMed  CAS  Google Scholar 

  • Bouchard P, DuMont Y, Fornier A, St Pierre S, Quirion R (1993) Evidence for in vivo interactions between NPY-related peptides and σ receptors in the mouse hippocampal formation. J Neurosci 13(9): 3926–3931

    PubMed  CAS  Google Scholar 

  • Boulenger JP, Jolicoeur FB, Lavalle YJ, Leduc R, Cadieux A (1996) Elevated plasma levels of neuropeptide Y in patients with panic disorder. Am J Psychiatry 153: 114–116

    PubMed  CAS  Google Scholar 

  • Brambilla F, Bellodi L, Perna G, Garbert A, Panerai A, Sacerdote P (1993) T cell cholecystokinin concentrations in panic disorder. Am J Psychiatry 150: 1111–1113

    PubMed  CAS  Google Scholar 

  • Burnet PW, Harrison PJ (2000) Substanz P (NK1) receptors in the cingulate cortex in unipolar and biplolar mood disorder and schizophrenia. Biol Psychiatry 47: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Clissold DB, Pontecorvo MJ, Jones BE et al (1993) NCP 16377, a potent and selective sigma-ligand. II. Behavioral and neuroprotective profile. J Pharmacol Exp Ther 265(2): 876–886

    PubMed  CAS  Google Scholar 

  • Crawley JN, Corwin RL (1994) Biological actions of of cholecystokinin. Peptides 15: 731–755

    Article  PubMed  CAS  Google Scholar 

  • de Bellis MD, Gold PW, Geracoti Jr TD, Listwak SJ, Kling MA (1993) Association of fluvoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry 150: 656–667

    PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O’Brian JA et al (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392: 394–397

    Article  PubMed  Google Scholar 

  • de Wied (1999) Behavioral pharmacology of neuropeptides related to melanocortins and the neurohypophyseal hormones. Eur J Pharmacol 375: 1–11

    Article  PubMed  Google Scholar 

  • de Winter RFP, van Hemert AM, DeRijk RH, Zwinderman KH, Frankhui-jzen-Siervogel AC, Wiegant VM, Goekoop JG (2003) Anxious-retarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology 28: 140–147

    Article  PubMed  CAS  Google Scholar 

  • Elliot PJ, Mason GS, Graham EA, Turpin MP, Hagan RM (1992) Modulation of the rat mesolimbic dopamine pathway by neurokinins. Behav Brain Res 51: 77–82

    Article  Google Scholar 

  • Enserink M (1999) Can the placebo be the cure? Science 284: 238–240

    Article  PubMed  CAS  Google Scholar 

  • Erhardt A, Ising M, Unschuld PG et al (2006) Regulation of the hypothalamic-pituitary-adrenocortical system in patients with panic disorder. Neuropsychopharmacology 31: 2515–2522

    Article  PubMed  CAS  Google Scholar 

  • Feifel D, Reza T, Robeck S (1999) Antipsychotic potential of CCK-based treatments: an assessment using the prepulse inhibition model of psychosis. Neuropsychopharmacology 20: 141–149

    Article  PubMed  CAS  Google Scholar 

  • File SE (2000) NK608, an NK, receptor antagonist, has an anxiolytic action in the social interaction test in rats. Psychopharmacology 152: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Frankenland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS (1997) Activation of amygdala cholecystokinin B receptors potentiates the acoustic startle response in the rat. J Neurosci 17: 1838–1847

    Google Scholar 

  • Fuxe K, Agnati LF (eds) (1991) Volume transmission in the brain: novel mechanisms for neural transmission. Raven Press, New York

    Google Scholar 

  • Fuxe K, Li XM, Tanganelli S, Hedlund P et al (1995) Receptor-receptor interactions and their relevance for receptor diversity. Focus on neuropeptide/dopamine interactions. Ann NY Acad Sci 757: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SM, Davison M, Haroutunian V et al (1996) Neuropeptide deficits in schizophrenia vs. Alzheimer’s disease in cerebral cortex. Biol Psychiatry 39: 82–91

    Article  PubMed  CAS  Google Scholar 

  • Geriacoti TD, Orth DN, Ekhator NN, Blumenkopf B, Loosen PT (1992) Serial cerebrospinal fluid corticotropin-releasing hormone concentrations in healthy and depressed humans. J Clin Endocrinol Metab 74: 1325–1330

    Article  Google Scholar 

  • Gerner RH, van Kammen DP, Ninan PT (1985) Cerebrospinal fluid cholecystokinin, bombesin and somatostatin in schizophrenia and normals. Prog Neuro Pharmacol Biol Psychiatr 9: 73–82

    Article  CAS  Google Scholar 

  • Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarisation block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Griebel (1999) Is there a future for neuropeptide receptor ligands in the treatment of anxiety disorders? Pharmacol Ther 82: 1–61

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C et al (2002) Anxiolytic-and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR 149415, suggest an innovative approach for the treatment of stress-related d disorders. Proc Natl Acad Sci USA 99: 6370–6375

    Article  PubMed  CAS  Google Scholar 

  • Gully D, Labeeuw B, Boigegrain R et al (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J Pharmacol Exp Ther 280(2): 802–812

    PubMed  CAS  Google Scholar 

  • Hasenöhrl RU, De Souza-Silva MA, Nikolaus S, Tomaz C, Brandao ML, Schwarting RKW, Huston JP (2000) Substance P and its role in neural mechanisms governing learning, anxiety and functional recovery. Neuropeptides 34: 272–280

    Article  PubMed  Google Scholar 

  • Heuser I, Bissette G, Dettling M et al (1998). Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depression Anxiety 8: 71–79

    Article  CAS  Google Scholar 

  • Hökfelt T, Broberger C, Xu ZQD, Sergeyev V, Ubink R, Diez M (2000): Neuropeptides — an overview. Neuropharmacology 39: 1337–1356

    Article  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropharmacology 23: 477–501

    CAS  Google Scholar 

  • Hubry VJ (2002) Designing peptide receptor agonists and antagonists. Drug Discovery 1: 847–858

    Article  CAS  Google Scholar 

  • Kaye WH, Berrettini W, Gwirtsmabn H, George DT (1990) Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa. Arch Gen Psychiatry 47: 548–546

    PubMed  CAS  Google Scholar 

  • Keck ME, Holsboer F (2001) Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22: 835–844

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Welt T, Wigger A et al (2001) The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Wigger A, Welt T et al (2002) Vasopressin mediates the response of the combined dexamethason/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26: 94–105

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Welt T, Müller MB et al (2003) Reduction in hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine. Neuropsychopharmacology 28: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Ohl F, Holsboer F, Müller MB (2005) Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 29: 867–889

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler NR, Ballenger JC et al (1995) A placebo-controlled trial of L-365,260, a CCK-B antagonist, in panic disorder. Biol Psychiatry 37: 462–466

    Article  PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J et al (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281: 1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Lacy MG (1993) Neurotransmitter receptors and ionic conductances regulating the activity of neurones in substantia nigra pars compacta and ventral tegmental area. Prog Brain Res 99: 251–276

    Google Scholar 

  • Landgraf R, Gerstenberger R, Montkowski A et al (1995) V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities and anxiety-related behavior in rats. J Neurosci 15: 4250–4258

    PubMed  CAS  Google Scholar 

  • Landry M, Vila-Porcile E, Hökfelt T, Calas A (2003) Differential role of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 17: 579–589

    Article  Google Scholar 

  • Lines C, Challenor J, Traub M (1995) Cholecystokinin and anxiety in normal volunteers: an investigation of the anxiogenic properties of pentagastrin and reversal by cholecystokinin receptor subtype B antagonist L-365,260. Br J Pharmacol 39: 235–242

    CAS  Google Scholar 

  • Liu RY, Zhou JN, Hoogendijk WJG et al (2000) Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression. J Neuropathol Exp Neurol 59(4): 314–322

    PubMed  CAS  Google Scholar 

  • Lucassen PJ, VanHeerikhuize JJ, Guldenaar SEF, Pool CW, Hofman MA, Swaab DF (1997) Unchanged amounts of vasopressin mRNA in the supraoptic and paraventricular nucleus during aging and in Alzheimer’s disease. J Neuroendocrinol 9: 297–305

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Hashimoto K, Gold PW (2002) Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 73: 147–158

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, Green MC (1988) The use of cholecystokinin in schizophrenia: a review. Psychol Med 18: 593–603

    PubMed  CAS  Google Scholar 

  • Nemeroff CB, Owens MJ (2002) Treatment of mood disorders. Nature Neurosci 5: 1068–1070

    Article  PubMed  CAS  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95: 567–575

    Article  PubMed  CAS  Google Scholar 

  • Newport DJ, Heim C, Owens MJ et al (2003) Cerebrospinal fluid corticotropin-releasing factor (CRF) and vasopressin concentrations predict pituitary response in the CRF stimulation test: a multiple regression analysis. Neuropsychopharmacology 28: 569–576

    Article  PubMed  CAS  Google Scholar 

  • Peters J, Van Kammen D, Gelernter J, Yao J, Shaw D (1990) Neuropeptide Y-like immunoreactivity in schizophrenia. Relationships with clinical measures. Schiz Res 3(5–6): 287–294

    Article  CAS  Google Scholar 

  • Powchik P, Davison M, Haroutunian V et al (1998) Postmortem studies in schizophrenia. Schiz Bull 24(3): 325–341

    CAS  Google Scholar 

  • Raadsheer FC, Vanheerikhuize JJ, Lucassen PJ, Hoogendijk WJG, Tilders FJH, Swaab DF (1995) Corticotropin-releasing hormone messenger-RNA levels in the paraven tricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry 152(9): 1372–1376

    PubMed  CAS  Google Scholar 

  • Radke JM, Mac Lennan AJ, Beinfeld MC, Bissette G, Nemeroff CB, Vincent SR (1989) Effects of short-and long-term haloperidol administration and withdrawal on regional brain cholecystokinin and neurotensin concentrations in the rat. Brain Res 480(1–2): 178–183

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AM, Southwick SM, Hauger RL, Charney DS (1998) Plasma neuropeptide Y (NPY) increases in humans in response to the α2 antagonist yohimbine. Neuropsychopharmacology 19: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Redrobe JP, Dumont Y, Fournier A, Quirion R (2002) The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Redrobe JP, Dumont Y, Herzog H, Quirion R (2003) Neuropeptide Y (NPY) Y2 receptors mediate behavior in two animal models of anxiety: evidence from Y2 receptor knockout mice. Behav Brain Res 14(2): 251–255

    Article  CAS  Google Scholar 

  • Rioux L, Nissanov J, Joyce JN (1998) Increased number of [125I] BH-substance P in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 45: 1085–1098

    Google Scholar 

  • Santarelli L, Gobbi G, Debs PC, Sibille EL, Blier P, Hen R, Heath MJS (2001) Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci USA 98: 1912–1917

    Article  PubMed  CAS  Google Scholar 

  • Sharma RP, Janicak PG, Bissette G, Nemeroff CB (1997) Neurotensin concentrations and antipsychotic treatment in schizophrenia and schizoaffective disorders. Am J Psychiatry 154: 1019–1021

    PubMed  CAS  Google Scholar 

  • Shlik J, Vasar E, Bradwejn J (1997) Cholecystokinin and psychiatric disorders. CNS Drugs 8: 134–152

    CAS  Google Scholar 

  • Skelton KH, Nemeroff CB, Knight DL, Owens MJ (2000) Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J Neurosci 20: 1240–1248

    PubMed  CAS  Google Scholar 

  • Spina MG, Merlo-Pich E, Akwa Y et al (2002) Time-dependent induction of anxiogenic-like effects after central infusion of urocortin or corticotropin-releasing factor in the rat. Psychopharmacology 160: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Stein MB, Hauger RL, Dhalla KS, Charter MS, Asmundson CJ (1996) Plasma neuropeptide Y in anxiety disorders: findings in panic disorder and social phobia. Psychiatric Res 59: 183–188

    Article  CAS  Google Scholar 

  • Stout SC, Owens MJ, Nemeroff CB (2002) Regulation of corticotropin-releasing factor neuronal systems and hypothalamic-pituitary-adrenal axis activity by stress and chronic antidepressant treatment. J Pharmacol Exp Ther 300: 1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF (1999) Hypothalamic peptides in human brain diseases. Science 10: 236–244

    CAS  Google Scholar 

  • Takahashi LK, Ho SP, Livanov V, Graciani N, Arneric SP (2001) Antagonism of CRF (2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res 902: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Teixeira RM, Santos ARS, Ribeiro SJ, Calixto JB, Rae GA, DeLima TCM (1996) Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol 311: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Thorsell A, Hellig M (2002) Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 36: 182–193

    Article  PubMed  CAS  Google Scholar 

  • Valdez GR, Inoue K, Koob GF, Rivier, J, Vale W, Zorrilla EP (2002) Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. Brain Res 943: 142–150

    Article  PubMed  CAS  Google Scholar 

  • Vanderhaegen JJ, Signeau JC, Gepts W (1975) New peptide in the vertebrate CNS reacting with an tigastrin antibodies. Nature 257: 604–605

    Article  Google Scholar 

  • Van der Hart MGC, Czéh B, de Biurrun G et al (2002) Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 7: 933–941

    Article  PubMed  CAS  Google Scholar 

  • van Londen L, Goekopp JC, van Kempen GMJ, Frankhuijzen-Sierevogel AC, Wiegant VM, van der Velde EA, de Wield D (1997) Plasma levels of arginine vasopressin are elevated in patients with major depression. Neuropsychopharmacology 17: 284–292

    Article  PubMed  Google Scholar 

  • van Megen HJGM, Westenberg HGM, den Boer JA, Slaap B, Scheep-markers A (1997) Effect of the selective serotonin reuptake inhibitor fluvoxamine on CCK-4 induced panic attacks. Psychopharmacology 129: 357–364

    Article  PubMed  Google Scholar 

  • Wahlestedt (1998) Reward for persistence in substance Presearch. Science 281: 1624–1625

    Article  PubMed  CAS  Google Scholar 

  • Westrin Å, Ekman R, Träskman-Benz L (1999) Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NYP) plasma levels in mood disorder patients with recent suicide attempt. Eur Neuropsychopharmacol 9: 205–211

    Article  PubMed  CAS  Google Scholar 

  • Widdowson PS, Orday GA, Halaws AE (1992) Reduced neuropeptide Y concentrations in suicide brain. J Neurochem 59: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Wilderlöv E, Lindstrom LH, Wahlestedt C, Ekman R (1988) Neuropeptide Y and peptide YY as possible cerebrospinal fluid markers for major depression and schizophrenia. J Psychiatr Res 22: 69–79

    Article  Google Scholar 

  • Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, Engelmann M (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85: 1209–1222

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich GR, Raymond R, DeSousa NJ, Nobrega JN, Vaccarino FJ (2002) Decreased CCK8 receptor binding in rat amygdala in animals demonstrating greater anxie ty-like behavior. Psychopharmacology 164; 193–199

    Article  PubMed  CAS  Google Scholar 

  • Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJG, van Heerikhuize JJ, Hofman Ma, Swaab DF (2001) Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 58(7): 655–662

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuro endocrinology 23: 963–987

    Article  CAS  Google Scholar 

  • Belanoff JK, Flores BH, Kalezhan M, Sund B, Schatzberg AF (2001) Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol 21: 516–521

    Article  PubMed  CAS  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21: 1–56

    Article  PubMed  CAS  Google Scholar 

  • Damlanisch K, Rupprecht R, Lancel M (2001) The influence of subchronic administration of the neurosteroid allopregnanolone on sleep in the rat. Neuropsychopharmacology 25: 576–584

    Article  Google Scholar 

  • Flood JF, Morley JE, Roberts E (1992) Memory-enhancing effects in male mice of pregnenolone and of steroids metabolically derived from it. Proc Natl Acad Sci USA 89: 1567–1571

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Scalise TJ (2000) Anti-seizure effects of progesterone and 3α,5α-THP in kainic acid and perforant pathway models of epilepsy. Psychoneuroendocrinology 25: 407–420

    Article  PubMed  CAS  Google Scholar 

  • Gasior M, Carter RB, Witkin JM (1999) Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci 20: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA 96: 13512–13517

    Article  PubMed  CAS  Google Scholar 

  • Hallonquist JD, Seeman MV, Lang M, Rector NA (1993) Variation in symptom severity over the menstrual cycle of schizophrenics. Biol Psychiatry 33: 207–209

    Article  PubMed  CAS  Google Scholar 

  • Häfner H, Maurer K, Löffler W, Richer-Rössler A (1993) The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry 162: 80–86

    PubMed  Google Scholar 

  • Hillen T, Lun A, Reischies FM, Borchelt M, Steinhagen-Thiessen E, Schaub RT (2000) DHEA-S plasma levels and incidence of Alzheimer’s disease. Biol Psychiatry 47: 161–163

    Article  PubMed  CAS  Google Scholar 

  • Janis GC, Devaud LL, Mitsuyama H, Morrow AL (1998) Effects of chronic ethanol consumption and withdrawal on the neuroactive steroid 3α-hydroxy-5α-pregnan-20-one in male and female rats. Alcohol Clin Exp Res 22: 2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni J, de Castella A, Smith D, Taffe J, Keks N, Copolov D (1996) A clinical trial of the effects of estrogen in acutely psychotic women. Schizophrenia Res 20: 247–252

    Article  CAS  Google Scholar 

  • Kulkarni J, Riedel A, de Castella AR, Fitzgerald PB, Rolfe TJ, Taffe, J, Burger H (2001) Estrogen—a potential treatment for schizophrenia. Schizophrenia Res 48: 137–144

    Article  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16: 295–303

    Article  PubMed  CAS  Google Scholar 

  • Lancel M, Faulhaber J, Holsboer F, Rupprecht R (1996) Progessterone induces changes in sleep EEG comparable to those of agonistic GABAA receptor modulators. Am J Physiol 271: E763–E772

    PubMed  CAS  Google Scholar 

  • Malison RT, Anand A, Pelton GH et al (1999) Limited efficacy of ketoconazole in treatment—refractory major depression. J Clin Psychopharmacol 19: 466–470

    Article  PubMed  CAS  Google Scholar 

  • Monaghan RP, McAuley JW, Data JL (1999) Ganaxolone: a novel positive allosteric modulator of the GABA(A) receptor complex for the treatment of epilepsy. Expert Opin investig Drugs 8: 1663–1671

    Article  PubMed  CAS  Google Scholar 

  • O—Dwyer A-M, Lightman SL, Marks MN, Checkley SA (1995) Treatment of major depression with metyrapone and hydrocortisone. J Affect Disord 33: 123–128

    Article  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6: 2311–2322

    PubMed  CAS  Google Scholar 

  • Romeo E, Ströhle A, Spalletta G et al (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155: 910–913

    PubMed  CAS  Google Scholar 

  • Romeo E, Pompili E, di Michele F, Pace M, Rupprecht R, Bernardi G, Pasini A (2000) Effects of fluoxetine, indomethacine and placebo on 3α,5α-tetrahydroprogesterone (THP) plasma levels in uncomplicated alcohol withdrawal. World J Biol Psychiatry 1: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28: 139–168

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22: 410–416

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R, Reul JMHM, Trapp T et al (1993) Progesterone receptormediated effects of neuroactive steroids. Neuron 11: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Ströhle A, Romeo E, di Michele F et al (2003) Induced panic attacks shift GABAA receptor modulatory neuroactive steroid composition in patients with panic disorder: preliminary results. Arch Gen Psychiatry 60: 161–168

    Article  PubMed  Google Scholar 

  • Thomas G, Frenoy N, Legrain S, Sebag-Lanoe R, Baulieu EE, Debuire B (1994) Serum dehydroepiandrosterone sulfate levels as an individual marker. J Clin Endocrinol Metab 79: 1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocrine Rev 14: 459–479

    Article  CAS  Google Scholar 

  • Vanover KE, Rosenzweig-Lipson S, Hawkinson JE et al (2000) Characterization of the anxiolytic properties of a novel neuroactive steroid, Co 2-6749 (GMA-839; WAY-141839; 3α, 21-Dihydroxy-3β-trifluoromethyl-19-nor-5β-pregnan-20-one), a selective modulator of γ-aminobutyric acidA receptors. J Pharmacol Exp Ther 295: 337–345

    PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI, Roberts E et al (1997) Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 41: 311–318

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29: 37–76

    Article  PubMed  CAS  Google Scholar 

  • Grotenhermen F (2005) Cannabinoids. Curr Drug Targets CNS Neurol Disord 4: 507–530

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (2000) The science of marijuana. Oxford University Press, Oxford

    Google Scholar 

  • Lutz B (2004) On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem Pharmacol 68: 1691–1698

    Article  PubMed  CAS  Google Scholar 

  • Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46: 101–122

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Alger BE (2005) Das Gehirn und sein Marihuana. Spektrum der Wissenschaft Juli 2005: 48–55

    Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27: 73–100

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nature Rev Neurosci 4: 73–84

    Google Scholar 

  • Steiner M, Lutz B (2006a) Physiologie und Pharmakologie des Endocannabinoid-Systems. Schusdziarra V (Hrsg) Das Endocannabinoid-System; UNI-MED, Bremen

    Google Scholar 

  • Steiner M, Lutz B (2006b) Endocannabinoid-System und zentrales Nervensystem. Schusdziarra V (Hrsg) Das Endocannabinoid-System; UNI-MED, Bremen

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Hevers, W. et al. (2008). Neurotransmitter und Modulatoren. In: Holsboer, F., Gründer, G., Benkert, O. (eds) Handbuch der Psychopharmakotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68748-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68748-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20475-6

  • Online ISBN: 978-3-540-68748-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics