Decomposition Theorems for Bounded Persistent Petri Nets

  • Eike Best
  • Philippe Darondeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)


We show that the cycles of a finite, bounded, reversible, and persistent Petri net can be decomposed in the following sense. There exists in the reachability graph a finite set of transition-disjoint cycles such that any other cycle through a given marking is permutation equivalent to a sequential composition of cycles from this set.

We show that Parikh images of cycles of a finite, bounded, and persistent Petri net form an additive monoid with a finite set of transition-disjoint generators (for any two distinct generators Ψ(γ) and Ψ(γ′), Ψ(γ)(t) = 0 or Ψ(γ′)(t) = 0 for every transition t).

Persistent nets are a very general class of conflict-free nets. Boundedness means, as usual, that the reachability graph is finite. Reversibility means that the reachability graph is strongly connected.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Best, E., Darondeau, P., Wimmel, H.: Making Petri Nets Safe and Free of Internal Transitions. Fundamenta Informaticae 80, 75–90 (2007)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Best, E., Esparza, J., Wimmel, H., Wolf, K.: Separability in Conflict-free Petri Nets. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 1–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Darondeau, P.: Equality of Languages Coincides with Isomorphism of Reachable State Graphs for Bounded and Persistent Petri Nets. Information Processing Letters 94, 241–245 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, 242 pages (1995) ISBN:0-521-46519-2Google Scholar
  6. 6.
    Grabowski, J.: The Decidability of Persistence for Vector Addition Systems. Information Processing Letter 11(1), 20–23 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Keller, R.M.: A Fundamental Theorem of Asynchronous Parallel Computation. In: Tse-Yun, F. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg (1975)Google Scholar
  8. 8.
    Landweber, L.H., Robertson, E.L.: Properties of Conflict-Free and Persistent Petri Nets. JACM 25(3), 352–364 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Stark, E.W.: Concurrent Transition Systems. TCS 64, 221–269 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Yamasaki, H.: On Weak Persistency of Petri Nets. Information Processing Letters 13(3), 94–97 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eike Best
    • 1
  • Philippe Darondeau
    • 2
  1. 1.Parallel Systems, Department of Computing ScienceCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.IRISARennes Cedex

Personalised recommendations