Labeled Step Sequences in Petri Nets

  • Matthias Jantzen
  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)


We compare various modes of firing transitions in Petri nets and investigate classes of languages specified by them. We define languages through steps, (i. e., sets of transitions), maximal steps, multi-steps, (i. e., multisets of transitions), and maximal multi-steps of transitions in Petri nets. However, by considering labeled transitions, we do this in a different manner than in [Burk 81a, Burk 83]. Namely, we allow only sets and multisets of transitions to form a (multi-)step, if they all share the same label. In a sequence of (multi-)steps, each of them contributes its label once to the generated word. Through different firing modes that allow multiple use of transitions in a single multi-step, we obtain a hierarchy of families of languages. Except for the maximal multi-steps all classes can be simulated by sequential firing of transitions.


Maximal Step Reachable Marking Counter Automaton Chomsky Hierarchy Failure Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bake 72]
    Baker, H.: Petri nets and languages. C.S.G Memo 68, Project MAC. MIT, Cambridge (1972)Google Scholar
  2. [Burk 80]
    Burkhard, H.-D.: The Maximum Firing Strategie in Petri nets gives more power. ICS-PAS Report no. 411, Warschau, pp. 24–26 (1980)Google Scholar
  3. [Burk 81a]
    Burkhard, H.-D.: Ordered Firing in Petri Nets. EIK 17(2/3), 71–86 (1981)MathSciNetGoogle Scholar
  4. [Burk 81b]
    Burkhard, H.-D.: Two Pumping Lemmata for Petri Nets. EIK 17(2/3), 349–362 (1981)MathSciNetGoogle Scholar
  5. [Burk 83]
    Burkhard, H.-D.: On priorities of parallelism: Petri nets under the maximum firing strategy. In: Salwicki, A. (ed.) Logics of Programs and Their Applications. LNCS, vol. 148, pp. 86–97. Springer, Heidelberg (1983)Google Scholar
  6. [DiRo 95]
    Diekert, V., Rozenberg, G.: The book of traces. World Scientific Publishing, Singapore (1995)Google Scholar
  7. [FaKR 06]
    Farwer, B., Kudlek, M., Rölke, H.: Concurrent turing machines. Fundamenta Informaticae 79(3-4), 303–317 (2007)zbMATHMathSciNetGoogle Scholar
  8. [FJKRZ 07]
    Farwer, B., Jantzen, M., Kudlek, M., Rölke, H., Zetzsche, G.: On concurrent finite automata. In: Czaja, L. (ed.) Proceedings of the workshop Concurrency, Specification and Programming (CS&P 2007), Łagów, Poland, September 2007, vol. 1, pp. 180–190 (2007)Google Scholar
  9. [Grei 78]
    Greibach, S.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7, 311–324 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Hack 76]
    Hack, M.: Petri Net Languages, TR-159. MIT, Laboratory Computer Science, Cambridge, Mass (1976)Google Scholar
  11. [HaJa 94]
    Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrixgrammars. Acta Informatica 31, 719–728 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Jant 79a]
    Jantzen, M.: On the hierarchy of Petri net languages. R.A.I.R.O., Informatique Théorique 13, 19–30 (1979)zbMATHMathSciNetGoogle Scholar
  13. [JaKZ 07a]
    Jantzen, M., Kudlek, M., Rölke, H., Zetzsche, G.: Finite automata controlled by Petri nets. In: Proceedings of the 14th workshop; Algorithmen und Werkzeuge für Petrinetze (S.Philippi, A.Pini eds.) technical report Nr. 25/2007, Univ. Koblenz-Landau, pp. 57–62 (2007) Google Scholar
  14. [JaKZ 07b]
    Jantzen, M., Kudlek, M., Zetzsche, G.: On languages accepted by concurrent finite automata. In: Czaja, L. (ed.) Proceedings of the workshop Concurrency, Specification and Programming (CS&P 2007), Łagów, Poland, September 2007, vol. 2, pp. 321–332 (2007)Google Scholar
  15. [JaKZ 08]
    Jantzen, M., Kudlek, M., Zetzsche, G.: Language classes defined by concurrent finite automata. Fundamenta Informaticae 85, 1–14 (2008)Google Scholar
  16. [Kosa 82]
    Kosaraju, S.R.: Decidability of reachability of vector addition systems. In: 14th Annual ACM Symp. on Theory of Computing, San Francisco, pp. 267–281 (1982)Google Scholar
  17. [KuSa 86]
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages, EATCS-Monographs on Theoretical Computer Science, vol. 5. Springer, Heidelberg, Berlin (1986)Google Scholar
  18. [Kudl 05]
    Kudlek, M.: Sequentiality, Parallelism, and Maximality in Petri Nets. In: Farwer, B., Moldt, D. (eds.) Object Petri Nets, Processes, and Object Calculi, pp. 43–50 (2005); techn. report FBI-HH-B-265/05Google Scholar
  19. [Lamb 92]
    Lambert, J.L.: A structure to decide reachability in Petri nets. Theoretical Computer Science 99, 79–104 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Mayr 81]
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pp. 238–246 (1981)Google Scholar
  21. [Mayr 84]
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. of Computing 13, 441–459 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Muku 92]
    Mukund, M.: Petri nets and step transition systems. Internat. J. of Foundations of Computer Science 3(4), 443–478 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [NiPS 95]
    Nielsen, M., Priese, L., Sassone, V.: Characterizing Behavioural Congruences for Petri Nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 175–189. Springer, Heidelberg (1995)Google Scholar
  24. [Papa 94]
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley, Reading (1949)Google Scholar
  25. [Pete 81]
    Peterson, J.L.: Petri Nets and the Modelling of Systems. MIT Press Series in Computer Science (1981)Google Scholar
  26. [Reis 99]
    Reischuk, K.R.: Komplexitätstheorie. In: Teubner, B.G. (ed.) Band I: Grundlagen, Stuttgart, Leipzig (1999)Google Scholar
  27. [SaMu 81]
    Salwicki, A., Müldner, T.: On the algorithmic properties of concurrent programs. In: Engeler, E. (ed.) Proceedings of the internat. Workshop: Logic of Programs, 1979, Zürich. LNCS, vol. 125, pp. 169–197. Springer, Heidelberg (1981)Google Scholar
  28. [SeFM 78]
    Seiferas, J., Fischer, M., Meyer, A.: Separating Nondeterministic Time Complexity Classes. J. ACM 25, 146–167 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  29. [Zak 83]
    Zak, S.: A TM Time Hierarchy. Theoretical Computer Science 26, 327–333 (1983)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthias Jantzen
    • 1
  • Georg Zetzsche
    • 1
  1. 1.Faculty of Mathematics, Informatics, and Natural Sciences, Deptartment of InformaticsUniversity of HamburgHamburg

Personalised recommendations