Modelling Concurrency with Quotient Monoids

  • Ryszard Janicki
  • Dai Tri Man Lê
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)


Four quotient monoids over step sequences and one with compound generators are introduced and discussed. They all can be regarded as extensions (of various degrees) of Mazurkiewicz traces [14] and comtraces of [10].


quotient monoids traces comtraces step sequences stratified partial orders stratified order structures canonical representations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartier, P., Foata, D.: Problèmes combinatoires de commutation et ré-arrangements. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg (1969)Google Scholar
  2. 2.
    Cohn, P.M., Reidel, D.: Universal Algebra (1981)Google Scholar
  3. 3.
    Davillers, R., Janicki, R., Koutny, M., Lauer, P.E.: Concurrent and Maximally Concurrent Evolution of Non-sequential Systems. Theoretical Computer Science 43, 213–238 (1986)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Desel, J.: Private Information, Communicated to the authors by G. Juhás (2007)Google Scholar
  5. 5.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  6. 6.
    Gaifman, H., Pratt, V.: Partial Order Models of Concurrency and the Computation of Function. In: Proc. of LICS 1987, pp. 72–85. IEEE, Los Alamitos (1987)Google Scholar
  7. 7.
    Guo, G., Janicki, R.: Modelling Concurrent Behaviours by Commutativity and Weak Causality Relations. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 178–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Janicki, R., Koutny, M.: Invariants and Paradigms of Concurrency Theory. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Janicki, R., Koutny, M.: Structure of Concurrency. Theoretical Compututer Science 112(1), 5–52 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computation 123(1), 1–16 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Janicki, R., Koutny, M.: Fundamentals of Modelling Concurrency Using Discrete Relational Structures. Acta Informatica 34, 367–388 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Juhás, G., Lorenz, R., Mauser, S.: Synchronous + Concurrent + Sequential = Earlier Than + Not Later Than. In: Proc. of ACSD 2006 (Application of Concurrency to System Design), Turku, Finland, pp. 261–272. IEEE Press, Los Alamitos (2006)Google Scholar
  13. 13.
    Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Information and Computation 190, 18–69 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Mazurkiewicz, A.: Introduction to Trace Theory, in [5], pp. 3–42Google Scholar
  15. 15.
    Ochmański, E.: Recognizable Trace Languages, in [5], pp. 167–204Google Scholar
  16. 16.
    Shields, M.W.: Adequate Path Expressions. In: Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 249–265. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ryszard Janicki
    • 1
  • Dai Tri Man Lê
    • 1
  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations