Advertisement

Synthesis of Nets with Step Firing Policies

  • Philippe Darondeau
  • Maciej Koutny
  • Marta Pietkiewicz-Koutny
  • Alex Yakovlev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)

Abstract

The unconstrained step semantics of Petri nets is impractical for simulating and modelling applications. In the past, this inadequacy has been alleviated by introducing various flavours of maximally concurrent semantics, as well as priority orders. In this paper, we introduce a general way of controlling step semantics of Petri nets through step firing policies that restrict the concurrent behaviour of Petri nets and so improve their execution and modelling features. In a nutshell, a step firing policy disables at each marking a subset of enabled steps which could otherwise be executed. We discuss various examples of step firing policies and then investigate the synthesis problem for Petri nets controlled by such policies. Using generalised regions of step transition systems, we provide an axiomatic characterisation of those transition systems which can be realised as reachability graphs of Petri nets controlled by a given step firing policy. We also provide a decision and synthesis algorithm for PT-nets and step firing policies based on linear rewards of steps, where fixing the reward of elementary transitions is part of the synthesis problem. The simplicity of the algorithm supports our claim that the proposed approach is practical.

Keywords

Petri nets step firing policy step transition system regions synthesis problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badouel, E., Bernardinello, L., Darondeau, Ph.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Badouel, E., Darondeau, P.: On the Synthesis of General Petri Nets. Report INRIA-RR 3025 (1996)Google Scholar
  3. 3.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the Synchronic Structure of Transition Systems. In: Desel, J. (ed.) Structures in Concurrency Theory, pp. 11–31. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Busi, N., Pinna, G.M.: Synthesis of Nets with Inhibitor Arcs. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Chernikova, N.: Algorithm for Finding a General Formula for the Non-negative Solutions of a System of Linear Inequalities. USSR Computational Mathematics and Mathematical Physics 5, 228–233 (1965)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Trans. on Information and Systems E80-D, 315–325 (1997)Google Scholar
  8. 8.
    Darondeau, Ph., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of Nets with Step Firing Policies. Report CS-TR-1080, Newcastle University (2008)Google Scholar
  9. 9.
    Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica 33, 297–315 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part I: Basic Notions and the Representation Problem. Acta Informatica 27, 315–342 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part II: State Spaces of Concurrent Systems. Acta Informatica 27, 343–368 (1990)zbMATHMathSciNetGoogle Scholar
  12. 12.
  13. 13.
    Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Koutny, M., Pietkiewicz-Koutny, M.: Transition Systems of Elementary Net Systems with Localities. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 173–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Elementary Net Systems with Context Arcs and Localities. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 281–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Mazurkiewicz, A.: Petri Nets Without Tokens. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 20–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Mukund, M.: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3, 443–478 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pietkiewicz-Koutny, M.: The Synthesis Problem for Elementary Nets with Inhibitor Arcs. Fundamenta Informaticae 40, 251–283 (1999)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, Chichester (1986)zbMATHGoogle Scholar
  20. 20.
    Starke, P.: Some Properties of Timed Nets under the Earliest Firing Rule. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe Darondeau
    • 1
  • Maciej Koutny
    • 2
  • Marta Pietkiewicz-Koutny
    • 2
  • Alex Yakovlev
    • 3
  1. 1.IRISA Rennes CedexFrance
  2. 2.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
  3. 3.School of Electrical, Electronic and Computer EngineeringNewcastle UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations