Skip to main content

The Role of Ferroelectricity for Piezoelectric Materials

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

Most of the technological applications of piezoelectricity used nowadays are based on ferroelectric materials. This is due to the following reasons:

  1. 1.

    Because of the high piezoelectric effect that can be found in these materials, a high and efficient electromechanical transformation of energy and signals can be achieved.

  2. 2.

    In general, the remnant electrical polarization that occurs in these materials can be oriented into a desired direction by applying an external electrical field: this means by poling, if needed, at elevated temperature. Therefore it becomes possible to imprint a unipolar direction of macroscopic preference or anisotropy to a device even after processing it. Obviously, this unipolarity is mandatory for every piezoelectric action.

  3. 3.

    Therefore, materials that are macroscopically isotropic by nature after the production process can be also used. This concerns, e.g., ceramics, plastics, or composites, which can be processed using well-known methods to adapt and shape the material according to the requirements of the final use.

  4. 4.

    For piezoelectric applications, the group of ceramics based on the so-called perovskite structure is especially important. These materials are already being used over a broad field of technological applications such as in capacitors and PTC resistors1. Therefore, experience in the mass production, reliability, etc. of these materials is already available.

  5. 5.

    Therefore, also from the point of view of production cost, ferroelectric materials offer good advantages.

Consequently, it makes sense to offer here a short introduction into this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Wersing, in Electronic Ceramics, ed. by B.C.H. Steele (Elsevier, London, New York, 1991)

    Google Scholar 

  2. R. Comes, M. Lambert, A. Guinier, Solid State Commun. 6, 715 (1968)

    Article  ADS  Google Scholar 

  3. W.J. Merz, Phys. Rev. 76, 1221 (1949)

    Article  ADS  Google Scholar 

  4. A.F. Devonshire, Phil. Mag. 40, 1040 (1949); Phil. Mag. 42, 1065 (1951)

    Google Scholar 

  5. V. Dvorak, Phys. Stat. Sol. 45, 147 (1971)

    Article  ADS  Google Scholar 

  6. W. Wersing, Ferroelectrics 54, 207 (1984)

    Google Scholar 

  7. W. Wersing, Ferroelectrics 7, 163 (1973)

    Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  9. W. Cochran, Phys. Rev. Lett. 3, 412 (1959)

    Article  ADS  Google Scholar 

  10. H. Thomann, Ferroelectrics 73, 183 (1987)

    Google Scholar 

  11. M.J. Haun, Z.Q. Zhuang, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 45 (1989)

    Google Scholar 

  12. A. von Hippel, R.G. Breckenridge, F.G. Chesley, L. Tisza, Ind. Eng. Chem. 38, 1097 (1946)

    Article  Google Scholar 

  13. R.B. Gray, U.S. Patent 2, 486, 560, (Nov. 1, 1949); filed (Sept. 20, 1946)

    Google Scholar 

  14. B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954)

    Article  ADS  Google Scholar 

  15. D. Damjanovic, M. Demartin, J. Phys. Condens. Matter 9, 4943 (1997)

    Article  ADS  Google Scholar 

  16. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  ADS  Google Scholar 

  17. W. Wersing, G. Zorn, K. Lubitz, J. Mohaupt, Jpn. J. Appl. Phys. 24(Suppl. 24-2), 724 (1985)

    Google Scholar 

  18. W. Wersing, Ferroelectrics 37, 611 (1981)

    Google Scholar 

  19. K. Carl, K.H. Härdtl, Phys. Stat. Sol. (a) 8, 87 (1971)

    Article  ADS  Google Scholar 

  20. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)

    Article  Google Scholar 

  21. L. Bellaiche, A. Garcia, D. Vanderbilt, Phys. Rev. B 64, 060103 (2001)

    Article  ADS  Google Scholar 

  22. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, New York, 1971)

    Google Scholar 

  23. Y. Fetiveau, Thesis, University Lyon, 1969

    Google Scholar 

  24. G. Burns, B.A. Scott, Phys. Rev. Letters 25, 1191 (1970)

    Article  ADS  Google Scholar 

  25. W. Wersing, Proc. 4th Int. Meeting Electro- and Magnetoceramics, Celle, 162–182 (1981)

    Google Scholar 

  26. D.A.G. Bruggemann, Ann. Phys. (Germany) 24, 636 (1935)

    Article  ADS  Google Scholar 

  27. G. Arlt, H. Dederichs, Ferroelectrics 29, 47 (1980)

    Google Scholar 

  28. G. Arlt, Ferroelectrics 40, 149 (1982)

    Google Scholar 

  29. W. Wersing, K. Lubitz, J. Mohaupt, Ferroelectrics 68, 77 (1986)

    Google Scholar 

  30. G. Zorn, W. Wersing, H. Göbel, Jpn. J. Appl. Phys. 24(Suppl. 24-2), 721 (1985)

    Google Scholar 

  31. A.G. Luchaninov, A.V. Shil’nikov, L.A. Shuvalow, Ferroelectrics 41, 181 (1982)

    Google Scholar 

  32. W. Wersing, K. Lubitz, J. Mohaupt, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 36, 424 (1989)

    Article  Google Scholar 

  33. Y. Yamashita, K. Yokoyama, H. Honda, T. Takahashi, Jpn. J. Appl. Phys. 20(suppl. 20-4), 183 (1981)

    Google Scholar 

  34. H. Takeuchi, S. Jyomura, E. Yamamoto, Y. Ito, J. Acoust. Soc. Am. 72, 1114 (1982)

    Article  ADS  Google Scholar 

  35. H. Takeuchi, S. Jyomura, C. Nakaya, Proc. 1985 IEEE Ultrason. Symp. 605–613 (1986)

    Google Scholar 

  36. K.M. Rittenmyer, R.Y. Ring, T.A. Henriques, J. Acoust. Soc. Am. 79, 2073 (1986)

    Article  ADS  Google Scholar 

  37. H. Thomann, W. Wersing, Ferroelectrics 40, 189 (1982)

    Google Scholar 

  38. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)

    Article  ADS  Google Scholar 

  39. W. Wersing, R. Bruchhaus, SPIE 2364, 12 (1994)

    Article  ADS  Google Scholar 

  40. D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 76, 1615 (2000)

    Article  ADS  Google Scholar 

  41. C. Kügeler, M. Hoffmann, U. Böttger, R. Waser, SPIE 4699, 114 (2002)

    Article  ADS  Google Scholar 

  42. L.A. Shuvalov, J. Phys. Sci. Japan 28(Suppl. 28), 38 (1970)

    Google Scholar 

  43. G. Arlt, Ferroelectrics 104, 217 (1990)

    Google Scholar 

  44. G. Arlt, IEEE Ultrasonics Symposium 733–741 (1990)

    Google Scholar 

  45. G. Simpson, Ferroelectrics 6, 283 (1974)

    Article  Google Scholar 

  46. M. Muratake, J. Phys. Soc. Japan 11, 807 (1956)

    Article  ADS  Google Scholar 

  47. A.V. Turik, G.I. Bondarenko, Ferroelectrics 7, 303 (1973)

    Google Scholar 

  48. J. Fousek, B. Brezina, J. Phys. Soc. Jpn. 19, 830 (1964)

    Article  ADS  Google Scholar 

  49. V.I. Aleshin, Sov. Phys. Tech. Phys. 35, 107 (1990)

    Google Scholar 

  50. A.G. Luchaninov, A.V. Shil’Nikov, L.A. Shuvalov, I.J.U. Shipkova, Ferroelectrics 98, 123 (1989)

    Google Scholar 

  51. E.K.W. Goo, R.K. Mishra, G. Thomas, J. Appl. Phys. 52, 2939 (1981)

    Article  ADS  Google Scholar 

  52. P.G. Lucata, V. Teodoresu, F. Vasiliu, Appl. Phys. A37, 237 (1985)

    ADS  Google Scholar 

  53. G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)

    Article  ADS  Google Scholar 

  54. S. Li, W. Cao, R.E. Newnham, L.E. Cross, Ferroelectrics 139, 25 (1993)

    Google Scholar 

  55. H. Kronmüller, Z. Angew. Phys. 30, 9 (1970)

    Google Scholar 

  56. M. Davis, D. Damjanovic, N. Setter, J. Appl. Phys. 95, 5679 (2004)

    Article  ADS  Google Scholar 

  57. A.B. Schäufele, K.H. Härdtl, J. Am. Ceram. Soc. 79(10), 2637 (1996)

    Article  Google Scholar 

  58. D.C. Lupascu, J. Rodel, Adv. Eng. mater. 7, 882 (2005)

    Article  Google Scholar 

  59. D.C. Lupascu, Fatigue in Ferroelectric Ceramics and Related Issues (Springer, Heidelberg, 2004)

    Google Scholar 

  60. A.B.K. Njiwa, D.C. Lupascu, J. Rödel, Acta Materialia 52, 4919 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wersing, W., Heywang, W., Beige, H., Thomann, H. (2008). The Role of Ferroelectricity for Piezoelectric Materials. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_3

Download citation

Publish with us

Policies and ethics