Skip to main content

Effective Medium Theories

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

Predicting macroscopic properties of materials involves two tasks:

  1. 1.

    Projection of macroscopic loading conditions onto the microstructural level with sufficient and adjusted details (resulting in fluctuating internal fields)

  2. 2.

    Averaging the local reaction of material to obtain the macroscopic response to the loadings

For piezoelectric/ferroelectric polycrystalline materials, the relevant micro-structural level is presented by special domain configurations within grains which have different orientations. The local material response comprises the elastic, dielectric, and intrinsic piezoelectric effect as well as the restructuring of domain configuration by movement of domain walls or complete reorientation of the spontaneous polarization, i.e., domain switching. Other processes as moving free charges and/or defect dipoles are normally not considered in present micro-macro models. They appear in the form of already averaged local properties, e.g., as an effective frictional force or activation energy for domain wall movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Arlt, J. Mater. Sci. 25, 2655 (1990)

    Article  ADS  Google Scholar 

  2. G. Arlt, Ferroelectrics 189, 91 (1996)

    Article  Google Scholar 

  3. A.T. Bartic, D.J. Wouters, H.E. Maes, J.T. Rickes, R.M. Waser, J. Appl. Phys. 89(6), 3420 (2001)

    Article  ADS  Google Scholar 

  4. A.Y. Belov, W.S. Kreher, J. Europ. Ceram. Soc. 25(12), 2567 (2005)

    Article  Google Scholar 

  5. M.L. Dunn, M. Taya, J. Am. Ceram. Soc. 76(7), 1697 (1993)

    Article  Google Scholar 

  6. M.L. Dunn, M. Taya, Proc. R. Soc. Lond. A 443, 265 (1993)

    Article  MATH  ADS  Google Scholar 

  7. D.A. Hall, J. Mater. Sci. 36(19), 4575 (2001)

    Article  Google Scholar 

  8. J.H. Huang, Int. J. Solids Struct. 33(20), 1439 (1996)

    Article  MATH  Google Scholar 

  9. J.H. Huang, J.S. Yu, Compos. Eng. 4, 1169 (1994)

    Article  Google Scholar 

  10. J.E. Huber, N.A. Fleck, J. Mech. Phys. Solids 49(4), 785 (2001)

    Article  MATH  ADS  Google Scholar 

  11. J.E. Huber, N.A. Fleck, C.M. Landis, R.M. McMeeking, J. Mech. Phys. Solids 47(8), 1663 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. S.C. Hwang, G. Arlt, J. Appl. Phys. 87(2), 869 (2000)

    Article  ADS  Google Scholar 

  13. S.C. Hwang, C.S. Lynch, R.M. McMeeking, Acta Metall. Mater. 43(5), 2073 (1995)

    Article  Google Scholar 

  14. S.C. Hwang, J.E. Huber, R.M. McMeeking, N.A. Fleck, J. Appl. Phys. 84(3), 1530 (1998)

    Article  ADS  Google Scholar 

  15. M. Kamlah, C. Tsakmakis, Int. J. Solids Struct. 36(5), 669 (1999)

    Article  MATH  Google Scholar 

  16. H. Kessler, H. Balke, J. Mech. Phys. Solids 49(5), 953 (2001)

    Article  MATH  ADS  Google Scholar 

  17. R.M. McMeeking, S.C. Hwang, Ferroelectrics 200, 151 (1997)

    Article  Google Scholar 

  18. R.M. McMeeking, C.M. Landis, Int. J. Eng. Sci. 40(14), 1553 (2002)

    Article  MathSciNet  Google Scholar 

  19. J.C. Piquette, E.A. McLaughlin, W. Ren, B.K. Mukherjee, J. Appl. Phys. 92(1), 438 (2002)

    Article  ADS  Google Scholar 

  20. G. Robert, D. Damjanovic, N. Setter, A.V. Turik, J. Appl. Phys. 89(9), 5067 (2001)

    Article  ADS  Google Scholar 

  21. J. Rödel, W.S. Kreher, Comp. Mater. Sci. 19(1–4), 123 (2000)

    Article  Google Scholar 

  22. J. Rödel, W.S. Kreher, J. Europ. Ceram. Soc. 23(13), 2297 (2003)

    Article  Google Scholar 

  23. J. Wang, S.-Q. Shi, L.Q. Chen, Y. Li, T.-Y. Zhang, Acta Mater. 52(3), 749 (2004)

    Article  Google Scholar 

  24. D. Zhou, M. Kamlah, D. Munz, in Smart Structures and Materials 2001, vol. 4332, ed. by C.S. Lynch. Proceedings of SPIE, SPIE — The International Society for Optical Engineering, Washington, 2001, pp. 64–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreher, W. (2008). Effective Medium Theories. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_23

Download citation

Publish with us

Policies and ethics