Skip to main content

Ferroelastic Characterization of Piezoelectrics

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

  • 7670 Accesses

The elastic deformation behavior of an isotropic material is governed by Young’s modulus Y and Poisson’s ratio σ. Knowledge of the Young’s modulus, for instance, is necessary to split the total deformation S i measured under load stress T i into elastic S el i and “plastic” S pl i strain contributions

$$S_i = S_i^{\rm el} + S_i^{\rm pl} = {T_i \over Y} + S_i^{\rm pl}$$
((20.1))

, where Y is not necessarily a constant, but may depend on the amount of nonelastic strains, as will be shown later. The methods for the determination of the Young’s moduli, well-known from conventional ceramics and also applicable to unpoled piezoelectric materials, are much more complicated for nonisotropic materials due to the tensorial character of the modulus and the special electric boundary conditions [1]. The conditions of a constant electrical field, E zE 3 = const, or a constant dielectric displacement, D zE 3 = const, influence the elastic properties. This effect may be illustrated for a uniaxial stress state with T x T 1 ≠ 0 exclusively. In the case of a piezoelectric material, we are interested in the components

$$S_1 = s_{11}^{\rm E}T_1 + d_{31}E_3$$

,

$$D_3 = d_{31}T_1 + \varepsilon_{33}^T E_3$$
((20.2))

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Fett, D. Münz, J. Test. Evaluat 28, S.27 (2000)

    Google Scholar 

  2. H. Cao, A.G. Evans, J. Am. Ceram. Soc. 76, 890 (1993)

    Article  Google Scholar 

  3. A. Schäufele, Ferroelastische Eigenschaften von Blei-Zirkonat-Titanat-Keramiken, Fortschrittsberichte VDI, Reihe 5, Nr. 445, (VDI-Verlag Düsseldorf, 1996)

    Google Scholar 

  4. A. Schäufele, K.H. Härdtl, J. Amer. Ceram. Soc. 79, 2637 (1996)

    Article  Google Scholar 

  5. T. Fett, S. Müller, D. Münz, G. Thun, J. Mater. Sci. Lett. 17, 261 (1998)

    Article  Google Scholar 

  6. T. Fett, D. Münz, G. Thun, Ferroelectrics 274, 67 (2002)

    Article  Google Scholar 

  7. D. Munz, T. Fett, CERAMICS, Failure, Material Selection, Design (Springer-Verlag, März, 1999)

    Google Scholar 

  8. T. Fett, D. Munz, G. Thun, Ferroelectrics 297, 83 (2003)

    Google Scholar 

  9. T. Fett, D. Munz, G. Thun, J. Mater. Sci. Lett. 18, 1899 (1999)

    Article  Google Scholar 

  10. W. Chen, C. Lynch, J. Eng. Mat. Technol. 123, 169 (2001)

    Article  Google Scholar 

  11. T. Fett, D. Munz, G. Thun, J. Am. Ceram. Soc. 86, 1427 (2003)

    Article  Google Scholar 

  12. W. Prager, An Introduction to Plasticity (Addison-Wesley, Amsterdam, 1959)

    MATH  Google Scholar 

  13. T. Fett, G. Thun, J. Mater. Sci. Lett. 17, 1929 (1998)

    Article  Google Scholar 

  14. D. Zhou, M. Kamlah, Acta Mat. 54, 1389 (2006)

    Article  Google Scholar 

  15. D. Zhou, M. Kamlah, J. Appl. Phys. 98, 104 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fett, T. (2008). Ferroelastic Characterization of Piezoelectrics. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_20

Download citation

Publish with us

Policies and ethics