Advertisement

Linear-Ordered Graph Grammars: Applications to Distributed Systems Design

  • Leila Ribeiro
  • Fernando Luís Dotti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

Linear-ordered graph grammars (LOGGs) are a special kind of graph grammars that were inspired by the general definitions of graph grammars and by tile systems. In this paper we show that this kind of grammar is particularly suited for the specification of distributed systems. Moreover, we discuss a simple extension of LOGGs inspired by the representation using tiles, leading to a notion of open graphs that can be very useful in a wider range of applications.

Keywords

Inference Rule Graph Transformation Tile System Type Graph Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BM02]
    Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1–2), 131–176 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. [CG99]
    Corradini, A., Gadducci, F.: An algebraic presentation of term graphs via gs-monoidal categories. Applied Categorical Structures 7, 299–331 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. [CMR96]
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3–4), 241–265 (1996)MathSciNetzbMATHGoogle Scholar
  4. [DMS05]
    Dotti, F., Mendizabal, O., Santos, O.: Verifying fault-tolerant distributed systems using object-based graph grammars. In: Maziero, C.A., Gabriel Silva, J., Andrade, A.M.S., Assis Silva, F.M.d. (eds.) LADC 2005. LNCS, vol. 3747, pp. 80–100. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. [DRS04]
    Dotti, F., Ribeiro, L., Santos, O.: Specification and analysis of fault behaviours using graph grammars. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 120–133. Springer, Heidelberg (2004)Google Scholar
  6. [EHK+97]
    Ehrig, H., Heckel, R., Korff, M., Lowë, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation II: Single pushout approach and comparison with double pushout approach. In: Handbook of graph grammars and computing by graph transformation, vol. 2, pp. 247–312. World Scientific, Singapore (1997)Google Scholar
  7. [Ehr79]
    Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  8. [EKMR99]
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of graph grammars and computing by graph transformation, vol. 3: Concurrency, parallelism and distribution. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  9. [FM00]
    Ferrari, G., Montanari, U.: Tile formats for located and mobile systems. Information and Computation 156(1/2), 173–235 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. [GM00]
    Gadducci, F., Montanari, U.: The tile model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT Press, Cambridge (2000)Google Scholar
  11. [GM02]
    Gadducci, F., Montanari, U.: Comparing logics for rewriting: Rewriting logic, action calculi and tile logic. Theor. Comput. Sci. 285(2), 319–358 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  12. [Kor95]
    Korff, M.: Generalized graph structures with application to concurrent object-oriented systems, Ph.D. thesis, Technische Universität Berlin (1995)Google Scholar
  13. [Low93]
    Lowë, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109, 181–224 (1993)CrossRefGoogle Scholar
  14. [MM98]
    Meseguer, J., Montanari, U.: Mapping tile logic into rewriting logic. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 62–91. Springer, Heidelberg (1998)Google Scholar
  15. [MR02]
    Montanari, U., Ribeiro, L.: Linear ordered graph grammars and their algebraic foundations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 317–333. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. [Roz97]
    Rozenberg, G.: Handbook of graph grammars and computing by graph transformation, vol. 1: Foundations. World Scientific, Singapore (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leila Ribeiro
    • 1
  • Fernando Luís Dotti
    • 2
  1. 1.Instituto de InformáticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de InformáticaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations