Advertisement

Transformations in Reconfigurable Place/Transition Systems

  • Ulrike Prange
  • Hartmut Ehrig
  • Kathrin Hoffmann
  • Julia Padberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

Reconfigurable place/transition systems are Petri nets with initial markings and a set of rules which allow the modification of the net during runtime in order to adapt the net to new requirements. For the transformation of Petri nets in the double pushout approach, the categorical framework of adhesive high-level replacement systems has been instantiated to Petri nets. In this paper, we show that also place/transition systems form a weak adhesive high-level replacement category. This allows us to apply the developed theory also to tranformations within reconfigurable place/transition systems.

Keywords

Front Face Graph Transformation Graph Grammar Direct Transformation Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meseguer, J., Montanari, U.: Petri Nets are Monoids. Information and Computation 88(2), 105–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Hoffmann, K., Ehrig, H., Mossakowski, T.: High-Level Nets with Nets and Rules as Tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 268–288. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of Net Transformations and Token Firing in Reconfigurable Place/Transition Systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement Systems: A New Categorical Framework for Graph Transformation. Fundamenta Informaticae 74(1), 1–29 (2006)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation: Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  7. 7.
    Lack, S., Sobociński, P.: Adhesive and Quasiadhesive Categories. Theoretical Informatics and Applications 39(3), 511–546 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Prange, U.: Algebraic High-Level Nets as Weak Adhesive HLR Categories. Electronic Communications of the EASST 2, 1–13 (2007)Google Scholar
  9. 9.
    Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer, Berlin (1985)zbMATHGoogle Scholar
  10. 10.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems. Theoretical Computer Science 96(1), 3–33 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey). In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  12. 12.
    Billington, J.: Extensions to Coloured Petri Nets. In: Proceedings of PNPM 1989, pp. 61–70. IEEE, Los Alamitos (1989)Google Scholar
  13. 13.
    Campos, J., Sánchez, B., Silva, M.: Throughput Lower Bounds for Markovian Petri Nets: Transformation Techniques. In: Proceedings of PNPM 1991, pp. 322–331. IEEE, Los Alamitos (1991)Google Scholar
  14. 14.
    Urbášek, M.: Categorical Net Transformations for Petri Net Technology. PhD thesis, TU Berlin (2003)Google Scholar
  15. 15.
    Belli, F., Dreyer, J.: Systems Modelling and Simulation by Means of Predicate/Transition Nets and Logic Programming. In: Proceedings of IEA/AIE 1994, pp. 465–474 (1994)Google Scholar
  16. 16.
    Bessey, T., Becker, M.: Comparison of the Modeling Power of Fluid Stochastic Petri Nets (FSPN) and Hybrid Petri Nets (HPN). In: Proceedings of SMC 2002, vol. 2, pp. 354–358. IEEE, Los Alamitos (2002)Google Scholar
  17. 17.
    de Lara, J., Vangheluwe, H.: Computer Aided Multi-Paradigm Modelling to Process Petri-Nets and Statecharts. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 239–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Kluge, O.: Modelling a Railway Crossing with Message Sequence Charts and Petri Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 197–218. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Parisi-Presicce, F.: A Formal Framework for Petri Net Class Transformations. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 409–430. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Corts, L., Eles, P., Peng, Z.: Modeling and Formal Verification of Embedded Systems Based on a Petri Net Representation. Journal of Systems Architecture 49(12-15), 571–598 (2003)CrossRefGoogle Scholar
  21. 21.
    Haddad, S.: A Reduction Theory for Coloured Nets. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 209–235. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Desel, J.: On Abstraction of Nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 78–92. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  23. 23.
    Esparza, J., Silva, M.: On the Analysis and Synthesis of Free Choice Systems. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 243–286. Springer, Heidelberg (1991)Google Scholar
  24. 24.
    Chehaibar, G.: Replacement of Open Interface Subnets and Stable State Transformation Equivalence. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 1–25. Springer, Heidelberg (1993)Google Scholar
  25. 25.
    Bonhomme, P., Aygalinc, P., Berthelot, G., Calvez, S.: Hierarchical Control of Time Petri Nets by Means of Transformations. In: Proceedings of SMC 2002, vol. 4, pp. 6–11. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  26. 26.
    Berthelot, G.: Checking Properties of Nets Using Transformation. In: Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  27. 27.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)Google Scholar
  28. 28.
    Best, E., Thielke, T.: Orthogonal Transformations for Coloured Petri Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 447–466. Springer, Heidelberg (1997)Google Scholar
  29. 29.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of the IEEE, vol. 77, pp. 541–580. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  30. 30.
    Best, E., Devillers, R., Koutny, M.: The Box Algebra = Petri Nets + Process Expressions. Information and Computation 178(1), 44–100 (2002)zbMATHMathSciNetGoogle Scholar
  31. 31.
    van der Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  32. 32.
    Padberg, J., Gajewsky, M., Ermel, C.: Rule-based Refinement of High-Level Nets Preserving Safety Properties. Science of Computer Programming 40(1), 97–118 (2001)zbMATHCrossRefGoogle Scholar
  33. 33.
    Padberg, J., Urbášek, M.: Rule-Based Refinement of Petri Nets: A Survey. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 161–196. Springer, Heidelberg (2003)Google Scholar
  34. 34.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Balbo, G., Bruell, S., Sereno, M.: Product Form Solution for Generalized Stochastic Petri Nets. IEEE Transactions on Software Engineering 28(10), 915–932 (2002)CrossRefGoogle Scholar
  36. 36.
    Carmona, J., Cortadella, J.: Input/Output Compatibility of Reactive Systems. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377. Springer, Heidelberg (2002)Google Scholar
  37. 37.
    Cheung, T., Lu, Y.: Five Classes of Invariant-Preserving Transformations on Colored Petri Nets. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 384–403. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  38. 38.
    Esparza, J.: Model Checking Using Net Unfoldings. Science of Computer Programming 23(2-3), 151–195 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Padberg, J., Hoffmann, K., Ehrig, H., Modica, T., Biermann, E., Ermel, C.: Maintaining Consistency in Layered Architectures of Mobile Ad-hoc Networks. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 383–397. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Llorens, M., Oliver, J.: Structural and Dynamic Changes in Concurrent Systems: Reconfigurable Petri Nets. IEEE Transactions on Computers 53(9), 1147–1158 (2004)CrossRefGoogle Scholar
  41. 41.
    AGG Homepage (2007), http://tfs.cs.tu-berlin.de/agg
  42. 42.
    Kindler, E., Weber, M.: The Petri Net Kernel - An Infrastructure for Building Petri Net Tools. Software Tools for Technology Transfer 3(4), 486–497 (2001)zbMATHGoogle Scholar
  43. 43.
    Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Parallelism and Concurrency in Adhesive High-Level Replacement Systems with Negative Application Conditions. Electronic Notes in Theoretical Computer Science (to appear 2008)Google Scholar
  44. 44.
    Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic High-Level Net Transformation Systems. Mathematical Structures in Computer Science 5(2), 217–256 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Prange, U.: Algebraic High-Level Systems as Weak Adhesive HLR Categories. Electronic Notes in Theoretical Computer Science (to appear, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ulrike Prange
    • 1
  • Hartmut Ehrig
    • 1
  • Kathrin Hoffmann
    • 1
  • Julia Padberg
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations