Advertisement

Synchronous Multiparty Synchronizations and Transactions

  • Ivan Lanese
  • Hernán Melgratti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

In this paper we analyze how a powerful synchronization mechanism such as synchronous multiparty synchronizations, which is able to specify atomic reconfigurations of large systems, can be implemented using binary synchronizations combined with a transactional mechanism. To this aim we show a mapping from SHR, a graph transformation framework allowing multiparty synchronizations, to a generalization of Fusion Calculus featuring a transactional mechanism inspired by the Zero-Safe Petri nets. To complete the correspondence between the two formalisms we also present a mapping in the opposite direction.

Keywords

Operational Semantic Graph Transformation Input Action Edge Label Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of software architecture styles with name mobility. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 148–163. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Hirsch, D.: Graph transformation models for software architecture styles. PhD thesis, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, U.B.A (2003)Google Scholar
  3. 3.
    Lanese, I., Montanari, U.: Hoare vs Milner: Comparing synchronizations in a graphical framework with mobility. In: Proc. of GT-VC 2005. Elect.Notes in Th.Comput.Sci., vol. 154(2), pp. 55–72. Elsevier Science, Amsterdam (2005)Google Scholar
  4. 4.
    Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes. In: Proc. of LICS 1998. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  5. 5.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inform.and Comput. 100, 1–77 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lanese, I., Montanari, U.: A graphical fusion calculus. In: Proc. of the Workshop of the COMETA Project. Elect.Notes in Th.Comput.Sci., vol. 104, pp. 199–215. Elsevier Science, Amsterdam (2004)Google Scholar
  7. 7.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Inform.and Comput. 156(1-2), 46–89 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lanese, I., Melgratti, H.: Synchronous multiparty synchronizations and transactions, http://cs.unibo.it/~lanese/work/ugo65-TR.pdf
  9. 9.
    Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes. PhD thesis, Dept.of Computer Systems, Uppsala University, Sweden (1998)Google Scholar
  10. 10.
    Castellani, I., Montanari, U.: Graph grammars for distributed systems. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 20–38. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  11. 11.
    Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mobility. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 121–136. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Ferrari, G., Montanari, U., Tuosto, E.: A LTS semantics of ambients via graph synchronization with mobility. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 1–16. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Lanese, I., Montanari, U.: Synchronization algebras with mobility for graph transformations. In: Proc. of FGUC 2004. Elect.Notes in Th.Comput.Sci., vol. 138, pp. 43–60. Elsevier, Amsterdam (2004)Google Scholar
  14. 14.
    Lanese, I.: Synchronization strategies for global computing models. PhD thesis, Computer Science Department, University of Pisa, Pisa, Italy (2006)Google Scholar
  15. 15.
    Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proc. of POPL 1996, pp. 372–385. ACM Press, New York (1996)CrossRefGoogle Scholar
  16. 16.
    Bocchi, L., Wischik, L.: A process calculus of atomic commit. In: Proc. of WS-FM 2004. Elect.Notes in Th.Comput.Sci., vol. 105, pp. 119–132. Elsevier, Amsterdam (2004)Google Scholar
  17. 17.
    Bruni, R., Montanari, U.: Concurrent models for linda with transactions. Math.Struct.in Comput.Sci. 14(3), 421–468 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gorrieri, R., Marchetti, S., Montanari, U.: A2CCS: Atomic actions for CCS. Theoret.Comput.Sci. 72(2&3), 203–223 (1990)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: extending Join. In: Proc. of IFIP-TCS 2004, pp. 569–582. Kluwer Academic, Dordrecht (2004)Google Scholar
  20. 20.
    Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 124–138. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ivan Lanese
    • 1
  • Hernán Melgratti
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di Bologna 
  2. 2.Departamento de ComputaciónFCEyN, Universidad de Buenos Aires 

Personalised recommendations