Observability Concepts in Abstract Data Type Specification, 30 Years Later

  • Donald Sannella
  • Andrzej Tarlecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


We recall the contribution of Montanari’s paper [GGM76] and sketch a framework for observable behaviour specification that blends some of these early ideas, seen from a more modern perspective, with our own approach.


Global Context Observable Behaviour Observable Part Abstract Data Type Local Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AG97]
    Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on Software Engineering and Methodology 6(3), 213–249 (1997)CrossRefGoogle Scholar
  2. [AKKB99]
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.): Algebraic Foundations of Systems Specification. Springer, Heidelberg (1999)Google Scholar
  3. [BH06]
    Bidoit, M., Hennicker, R.: Constructor-based observational logic. Journal of Logic and Algebraic Programming 67(1–2), 3–51 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BKL+91]
    Bidoit, M., Kreowski, H.-J., Lescanne, P., Orejas, F., Sannella, D. (eds.): Algebraic System Specification and Development: A Survey and Annotated Bibliography. LNCS, vol. 501. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  5. [BST02]
    Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in \({\sc Casl}\). Formal Aspects of Computing 13, 252–273 (2002)zbMATHCrossRefGoogle Scholar
  6. [BST08]
    Bidoit, M., Sannella, D., Tarlecki, A.: Observational interpretation of \({\sc Casl}\) specifications. Mathematical Structures in Computer Science 18, 325–371 (2008)zbMATHCrossRefGoogle Scholar
  7. [EM85]
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  8. [GGM76]
    Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type specifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 567–578. Springer, Heidelberg (1976)Google Scholar
  9. [GM00]
    Goguen, J.A., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1), 55–101 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Gog96]
    Goguen, J.A.: Parameterized programming and software architecture. In: Proc. 4th Intl. IEEE Conf. on Software Reuse, pp. 2–11 (1996)Google Scholar
  11. [GTW78]
    Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Yeh, R.T. (ed.) Current Trends in Programming Methodology. Data Structuring, vol. 4, pp. 80–149. Prentice-Hall, Englewood Cliffs (1978)Google Scholar
  12. [JNW96]
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Computation 127(2), 164–185 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Jon80]
    Jones, C.B.: Software Development: A Rigorous Approach. Prentice-Hall, Englewood Cliffs (1980)zbMATHGoogle Scholar
  14. [Kur01]
    Kurz, A.: Specifying coalgebras with modal logic. Theoretical Computer Science 260(1-2), 119–138 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Las97]
    Lasota, S.: Open maps as a bridge between algebraic observational equivalence and bisimilarity. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 285–299. Springer, Heidelberg (1998)Google Scholar
  16. [Las98]
    Lasota, S.: Partial-congruence factorization of bisimilarity induced by open maps. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 91–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. [Rei81]
    Reichel, H.: Behavioural equivalence – a unifying concept for initial and final specification methods. In: Proc. 3rd Hungarian Comp. Sci. Conference, pp. 27–39 (1981)Google Scholar
  18. [Rut00]
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Sch87]
    Schoett, O.: Data Abstraction and the Correctness of Modular Programming. PhD thesis, Dept.of Computer Science, Univ.of Edinburgh (1987)Google Scholar
  20. [SST92]
    Sannella, D., Sokołowski, S., Tarlecki, A.: Toward formal development of programs from algebraic specifications: Parameterisation revisited. Acta Informatica 29(8), 689–736 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [ST87]
    Sannella, D., Tarlecki, A.: On observational equivalence and algebraic specification. Journal of Computer and System Sciences 34, 150–178 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [ST88a]
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Computation 76, 165–210 (1988)CrossRefMathSciNetGoogle Scholar
  23. [ST88b]
    Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic specifications: Implementations revisited. Acta Informatica 25, 233–281 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [Wan79]
    Wand, M.: Final algebra semantics and data type extensions. Journal of Computer and System Sciences 19, 27–44 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [Wir90]
    Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 675–788. Elsevier, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Donald Sannella
    • 1
  • Andrzej Tarlecki
    • 2
    • 3
  1. 1.Laboratory for Foundations of Computer ScienceUniversity of Edinburgh 
  2. 2.Institute of InformaticsWarsaw University 
  3. 3.Institute of Computer SciencePolish Academy of Sciences 

Personalised recommendations