Calculating Colimits Compositionally

  • Robert Rosebrugh
  • Nicoletta Sabadini
  • Robert F. C. Walters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages.


Category Theory Regular Language Monoidal Category Monoidal Functor Symmetric Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Coecke, B.: A Categorical Semantics of Quantum Protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  2. 2.
    Bloom, S.L., Esik, Z.: Iteration Theories: the equational logic of iterative processes. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. 3.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection. Theor. Comput. Sci. 286(2), 247–292 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied Algebra 49, 11–32 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Francesco Albasini, L., Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Cospans and free symmetric monoidal categories (in preparation)Google Scholar
  6. 6.
    Elgot, C.C.: Monadic computation and iterative algebraic theories, Logoc Colloquium 1973, Studies in Logic 80, pp. 175–230. North Holland, Amsterdam (1975)Google Scholar
  7. 7.
    Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Gadducci, F., Heckel, R., Llabrés, M.: A bi-categorical axiomatisation of concurrent graph rewriting. In: Proc. CTCS 1999, Category Theory and Computer Science. Electronic Notes in Theoretical Computer Science, vol. 29, Elsevier Sciences, Amsterdam (1999)Google Scholar
  9. 9.
    Joyal, A., Street, R.H.: The geometry of tensor calculus I. Advances in Math. 88, 55–112 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), 447–468 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. Journal of Pure and Applied Algebra 115, 141–178 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): A categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di Palermo Serie II Suppl. 63, 123–156 (2000)MathSciNetGoogle Scholar
  14. 14.
    Katis, P., Sabadini, N., Walters, R.F.C.: A formalisation of the IWIM Model. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 267–283. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. Theoret. Informatics Appl. 36, 181–194 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra 19, 193–213 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kock, J.: Frobenius algebras and 2D topological Quantum Field Theories. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  18. 18.
    Menni, M., Sabadini, N., Walters, R.F.C.: A universal property of the monoidal 2-category of cospans of ordinals and surjections. Theory and Applications of Categories 18(19), 631–653 (2007)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computation 88, 105–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Penrose, R.: Applications of negative dimensional tensors. In: Combinatorial Mathematics and its Applications, p. 221. Academic Press, London (1971)Google Scholar
  21. 21.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Minimization and minimal realization in Span(Graph). Mathematical Structures in Computer Science 14, 685–714 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory and Applications of Categories 15(6), 264–277 (2005)MathSciNetGoogle Scholar
  23. 23.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits compositionally. Category Theory 2007, Carvoeiro, Portugal, 18th (June 2007)Google Scholar
  24. 24.
    Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits compositionally (in preparation)Google Scholar
  25. 25.
    Walters, R.F.C.: Lecture to the Sydney Category Seminar (January 26, 1983)Google Scholar
  26. 26.
    Walters, R.F.C.: The tensor product of matrices, Lecture. In: International Conference on Category Theory, Louvain-la-Neuve (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Rosebrugh
    • 1
  • Nicoletta Sabadini
    • 2
  • Robert F. C. Walters
    • 2
  1. 1.Department of Mathematics and StatisticsMt. Allison UniversitySackvilleCanada
  2. 2.Dipartimento di Scienze delle Cultura, Politiche e dell’InformazioneUniversità dell’InsubriaItaly

Personalised recommendations