Advertisement

A Category of Explicit Fusions

  • Filippo Bonchi
  • Maria Grazia Buscemi
  • Vincenzo Ciancia
  • Fabio Gadducci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

Name passing calculi are nowadays an established field on its own. Besides their practical relevance, they offered an intriguing challenge, since the standard operational, denotational and logical methods often proved inadequate to reason about these formalisms. A domain which has been successfully employed for languages with asymmetric communication, like the π-calculus, are presheaf categories based on (injective) relabelings, such as \({Set}^\mathbb{I}\). Calculi with symmetric binding, in the spirit of the fusion calculus, give rise to new research problems. In this work we examine the calculus of explicit fusions, and propose to model its syntax and semantics using the presheaf category \({Set}^\mathbb{E}\), where \(\mathbb{E}\) is the category of equivalence relations and equivalence preserving morphisms.

Keywords

Natural Transformation Operational Semantic Parallel Composition Abstract Syntax Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Proc. of LICS, pp. 69–80. IEEE, Los Alamitos (2006)Google Scholar
  2. 2.
    Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 364–380. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Bonchi, F., Montanari, U.: Symbolic semantics revisited. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 395–412. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Boreale, M., Buscemi, M.G., Montanari, U.: D-fusion: A distinctive fusion calculus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boreale, M., Sangiorgi, D.: Some congruence properties for pi-calculus bisimilarities. Theoret. Comput. Sci. 198(1-2), 159–176 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buscemi, M.G., Montanari, U.: A first order coalgebraic model of pi-calculus early observational equivalence. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 449–465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Buscemi, M.G., Montanari, U.: A compositional coalgebraic model of fusion calculus. J. Log. Algebr. Program. 72(1), 78–97 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ciancia, V., Montanari, U.: A name abstraction functor for named sets. In: Proc. of CMCS. Elect. Notes in Th. Comput. Sci (to appear, 2008)Google Scholar
  10. 10.
    Ferrari, G.L., Montanari, U., Pistore, M.: Minimizing transition systems for name passing calculi: A co-algebraic formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–158. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the pi-calculus using polymorphic types. Theoret. Comput. Sci. 331(2-3), 325–365 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ferrari, G.L., Montanari, U., Tuosto, E., Victor, B., Yemane, K.: Modelling fusion calculus using HD-automata. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 142–156. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Fiore, M.P., Moggi, E., Sangiorgi, D.: A fully abstract model for the π-calculus. Inf. Comput. 179(1), 76–117 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Proc. of LICS, pp. 193–202 (1999)Google Scholar
  15. 15.
    Fiore, M.P., Turi, D.: Semantics of name and value passing. In: Proc. of LICS, pp. 93–104. IEEE, Los Alamitos (2001)Google Scholar
  16. 16.
    Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3-5), 341–363 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3), 283–304 (2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    Gadducci, F., Montanari, U.: Graph processes with fusions: Concurrency by colimits, again. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 84–100. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. In: The Programming Language Ada. LNCS, vol. 106, pp. 105–120. Springer, Heidelberg (1981)Google Scholar
  20. 20.
    Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type specifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 576–587. Springer, Heidelberg (1976)Google Scholar
  21. 21.
    Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Proc. of LICS, pp. 204–213. IEEE, Los Alamitos (1999)Google Scholar
  22. 22.
    Lanese, I., Montanari, U.: Mapping fusion and synchronized hyperedge replacement into logic programming. Theory Pract. Log. Program. 7(1-2), 123–151 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform. and Comput. 100(1), 1–40 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Montanari, U., Pistore, M.: An introduction to history dependent automata. In: Proc. of HOOTS. Elect. Notes in Th. Comput. Sci, vol. 10, pp. 170–188 (1997)Google Scholar
  28. 28.
    Montanari, U., Pistore, M.: Structured coalgebras and minimal HD-automata for the pi-calculus. Theoret. Comput. Sci. 340(3), 539–576 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for CCS. Fundamenta Informaticae 16(1), 171–199 (1992)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes. In: Proc. of LICS, pp. 176–185. IEEE, Los Alamitos (1998)Google Scholar
  31. 31.
    Pistore, M.: History Dependent Automata. PhD thesis, Università di Pisa, Dipartimento di Informatica, Available at University of Pisa as PhD. Thesis TD-5/99 (1999)Google Scholar
  32. 32.
    Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, Computer Science Department (1981)Google Scholar
  33. 33.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform. 33(1), 69–97 (1996)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages. In: Programming Research Group Technical Monograph, Oxford University, Computing Laboratory, vol. PRG-6 (1971)Google Scholar
  36. 36.
    Stark, I.: A fully abstract domain model for the π-calculus. In: Proc. of LICS, pp. 36–42. IEEE, Los Alamitos (1996)Google Scholar
  37. 37.
    Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. of LICS, pp. 280–291. IEEE, Los Alamitos (1997)Google Scholar
  38. 38.
    Wischik, L., Gardner, P.: Strong bisimulation for the explicit fusion calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 484–498. Springer, Heidelberg (2004)Google Scholar
  39. 39.
    Wischik, L., Gardner, P.: Explicit fusions. Theoret. Comput. Sci. 340(3), 606–630 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Maria Grazia Buscemi
    • 2
  • Vincenzo Ciancia
    • 1
  • Fabio Gadducci
    • 1
  1. 1.Dipartimento di InformaticaUniversity of PisaItaly
  2. 2.IMT Lucca Institute for Advanced StudiesItaly

Personalised recommendations