StonyCam: A Formal Framework for Modeling, Analyzing and Regulating Cardiac Myocytes

  • Ezio Bartocci
  • Flavio Corradini
  • Radu Grosu
  • Emanuela Merelli
  • Oliviero Riganelli
  • Scott A. Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


This paper presents a formal framework, experimental infrastructure, and computational environment for modeling, analyzing and regulating the behavior of cardiac tissues. Based on the theory of hybrid automata, we aim at providing suitable tools to be used in devising strategies for the pharmacological or other forms of treatment of cardiac electrical disturbances.


Cardiac Myocytes Multiagent System Linear Temporal Logic Spiral Wave Formal Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeletti, M., Baldoncini, A., Cannata, N., Corradini, F., Culmone, R., Forcato, C., Mattioni, M., Merelli, E., Piergallini, R.: Orion: a spatial multiagent system framework for computational cellular dynamics of metabolic pathways. In: Bioinformatics Italian Society Meeting, BITS 2006 (2007)Google Scholar
  2. 2.
    Bartocci, E., Corradini, F., Di Berardini, M., Entcheva, E., Grosu, R., Smolka, S.: Spatial Networks of Hybrid I/O Automata for Modeling Excitable Tissue. In: The proceedings of FBTC 2007, pp. 86–102 (2007)Google Scholar
  3. 3.
    Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: Cellexcite: An efficient simulation environment for excitable cells. BMC Bioinformatics 9 (2007)Google Scholar
  4. 4.
    Beeler, G., Reuter, H.: Recostruction of the action potential of ventricular mycardial fibres. J Physiol 268, 177–210 (1977)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking. In: Zelkowitz, M. (ed.) Advances in Computers: Highly Dependable Software, vol. 58, Academic Press, London (2003)Google Scholar
  6. 6.
    Cannata, N., Corradini, F., Merelli, E., Omicini, A., Ricci, A.: An agent-oriented conceptual framework for systems biology. Transactions on Computational Systems Biology III 3737, 105–122 (2005)CrossRefGoogle Scholar
  7. 7.
    Corradini, F., Merelli, E.: Hermes: Agent-based middleware for mobile computing. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 234–270. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg, L.: WEKA – a machine learning workbench for data mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 1305–1314. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Grosu, R., Bartocci, E., Corradini, F., Entcheva, E., Smolka, S.A., Wasilewska, A.: Learning and detecting emergent behavior in networks of cardiac myocytes. In: Proc. of HSCC 2008, the 11th International Conference on Hybrid Systems: Computation and Control (2008)Google Scholar
  10. 10.
    Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I., Smolka, S.: Learning cycle-linear hybrid automata for excitable cells. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 245–258. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane currents and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)Google Scholar
  12. 12.
    Kwon, Y., Agha, G.: Scalable modeling and performance evaluation of wireless sensor networks. In: IEEE Real Time Technology and Applications Symposium, pp. 49–58 (2006)Google Scholar
  13. 13.
    Lu, Y.: Concept hierarchy in data mining: Specification, generation and implementation. Master’s thesis, Simon Fraser University (1997)Google Scholar
  14. 14.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)Google Scholar
  15. 15.
    Miyazaki, R., Yoshida, S., Nishita, T., Dobashi, Y.: A method for modeling clouds based on atmospheric fluid dynamics. In: Pacific Conference on Computer Graphics and Applications, pp. 363–373 (2001)Google Scholar
  16. 16.
    Owens, J.D.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum. 26(34), 80–113 (2007)CrossRefGoogle Scholar
  17. 17.
    Shusterman, E., Feder, M.: Image compression via improved quadtree decomposition algorithms. IEEE Transactions on Image Processing 3(2), 207–215 (1994)CrossRefGoogle Scholar
  18. 18.
    Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143(1-4), 1–20 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tabuada, P., Pappas, G.J.: Hybrid abstractions that preserve timed languages. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 501–514. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    True, M., Entcheva, E., Smolka, S., Ye, P., Grosu, R.: Efficient event-driven simulation of excitable hybrid automata. In: Proc. of EMBS 2006, the 28th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 3150–3153. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  21. 21.
    Ye, P., Entcheva, E., Grosu, R., Smolka, S.: Efficient modeling of excitable cells using hybrid automata. In: Proc. of CMSB 2005, the 3rd Workshop on Computational Methods in Systems Biology, pp. 216–227 (2005)Google Scholar
  22. 22.
    Ye, P., Entcheva, E., Smolka, S., Grosu, R.: A cycle-linear hybrid-automata model for excitable cells. IET Journal of Systems Biology (SYB) (2007)Google Scholar
  23. 23.
    Ye, P., Entcheva, E., True, M.R., Smolka, S.A., Grosu, R.: A cycle-linear approach to modeling action potentials. In: Proc. of EMBS 2006, the 28th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 3931–3934. IEEE Press, Los Alamitos (2006)Google Scholar
  24. 24.
    Ye, P., Entcheva, E., True, M., Smolka, S., Grosu, R.: Hybrid automata as a unifying framework for modeling cardiac cells. In: Proc. of EMBS 2006, the 28th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 4151–4154. IEEE Press, Los Alamitos (2006)Google Scholar
  25. 25.
    Zhang, Y., Hu, G., Cerdeira, H.A., Chen, S., Braun, T., Yao, Y.: Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. Physical Review E 63(2) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ezio Bartocci
    • 1
    • 2
  • Flavio Corradini
    • 1
  • Radu Grosu
    • 2
  • Emanuela Merelli
    • 1
  • Oliviero Riganelli
    • 1
    • 2
  • Scott A. Smolka
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CamerinoCamerinoItaly
  2. 2.Department of Computer ScienceStony Brook UniversityUSA

Personalised recommendations