On the Synthesis of Zero-Safe Nets

  • Philippe Darondeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


Zero-Safe nets are an adequate framework for representing linear step automata. We define a synthesis procedure based on regions for deriving Zero-Safe nets from such automata.


Span Tree Regular Language Atomic Step Synthesis Algorithm Linear Homogeneous Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruni, R., Montanari, U.: Zero-Safe nets, or transition synchronization made simple. In: Proc.  Express. ENTCS, vol. 7 (1997)Google Scholar
  2. 2.
    Bruni, R., Montanari, U.: Zero-safe nets: The individual token approach. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 122–140. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Information and Computation 156, 46–89 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruni, R., Montanari, U.: Transactions and Zero-Safe Nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 380–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    van Hee, K., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Soundness of Resource-Constrained Workflow Nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 250–267. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Acu, B., Reisig, W.: Compensation in Workflow Nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 65–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part I: Basic Notions and the Representation Problem. Acta Informatica 27, 315–342 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part II: State Spaces of Concurrent Systems. Acta Informatica 27, 343–368 (1990)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Mukund, M.: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3(4), 443–478 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe Darondeau
    • 1
  1. 1.IRISA, campus de BeaulieuRennes CedexFrance

Personalised recommendations