The Temporal Logic of Rewriting: A Gentle Introduction

  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


This paper presents the temporal logic of rewriting \(\mathit{TLR}^{\ast}\). Syntactically, \(\mathit{TLR}^{\ast}\) is a very simple extension of \(\mathit{CTL}^{\ast}\) which just adds action atoms, in the form of spatial action patterns, to \(\mathit{CTL}^{\ast}\). Semantically and pragmatically, however, when used together with rewriting logic as a “tandem” of system specification and property specification logics, it has substantially more expressive power than purely state-based logics like \(\mathit{CTL}^{\ast}\), or purely action-based logics like A-\(\mathit{CTL}^{\ast}\). Furthermore, it avoids the system/property mismatch problem experienced in state-based or action-based logics, which makes many useful properties inexpressible in those frameworks without unnatural changes to a system’s specification. The advantages in expresiveness of \(\mathit{TLR}^{\ast}\) are gained without losing the ability to use existing tools and algorithms to model check its properties: a faithful translation of models and formulas is given that allows verifying \(\mathit{TLR}^{\ast}\) properties with \(\mathit{CTL}^{\ast}\) model checkers.


Model Check Temporal Logic Atomic Proposition Label Transition System Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-checking approach for the analysis of communication protocols for Service-Oriented Applications. In: Proc. FMICS. LNCS, Springer, Heidelberg (to appear, 2008)Google Scholar
  2. 2.
    Bradfield, J., Stirling, C.: Modal Mu-Calculi. In: Handbook of Modal Logic, vol. 3, Elsevier, Amsterdam (2006)Google Scholar
  3. 3.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1-3), 386–414 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Caires, L.: Behavioral and spatial observations in a logic for the pi-calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–87. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Caires, L., Cardelli, L.: A spatial logic for concurrency - II. Theor. Comput. Sci. 322(3), 517–565 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chaki, S., Clarke, E., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T., Veith, H.: State/event software verification for branching-time specifications. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 53–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software verification with states, events, and deadlocks. Formal Aspects of Computing 17, 461–483 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading (1988)zbMATHGoogle Scholar
  11. 11.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)Google Scholar
  12. 12.
    Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martí-Oliet, N., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  13. 13.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  14. 14.
    Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking approach for verifying COWS specifications. In: FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Fantechi, A., Gnesi, S., Ristori, G.: From ACTL to Mu-Calculus. In: Proc. ERCIM Workshop on Theory and Practice of Verification (Pisa, Italy, December 1992), pp. 3–10. IEI-CNR (1992)Google Scholar
  16. 16.
    Fiadeiro, J., Martí-Oliet, N., Maibaum, T., Meseguer, J., Pita, I.: Towards a verification logic for rewriting logic. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 438–458. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Gnesi, S., Mazzanti, F.: A Model Checking Verification Environment for UML Statecharts. In: Proceedings XLIII AICA Annual Conference, University of Udine - AICA 2005, October 2-5 (2005)Google Scholar
  19. 19.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the Association for Computing Machinery 32(1), 137–172 (1985)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Kindler, E., Vesper, T.: ESTL: A temporal logic for events and states. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Lamport, L.: A temporal logic of actions. ACM Trans. on Prog. Lang. and Systems 16(3), 872–923 (1994)CrossRefGoogle Scholar
  24. 24.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems – Specification. Springer, Heidelberg (1992)Google Scholar
  25. 25.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theoretical Computer Science 285, 121–154 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Martí-Oliet, N., Pita, I., Fiadeiro, J.L., Meseguer, J., Maibaum, T.S.E.: A verification logic for rewriting logic. J. Log. Comput. 15(3), 317–352 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Mateescu, R.: Logiques temporelles basées sur actions pour la vérification des systèmes asynchrones. Technique et Science Informatiques 22(4), 461–495 (2003); also, INRIA Report 5032 (December 2003)CrossRefGoogle Scholar
  28. 28.
    Meadows, C., Syverson, P.F., Cervesato, I.: Formal specification and analysis of the group domain of interpretation protocol using NPATRL and the NRL protocol analyzer. Journal of Computer Security 12(6), 893–931 (2004)Google Scholar
  29. 29.
    Meseguer, J.: Localized fairness: A rewriting semantics. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 250–263. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Meseguer, J.: The temporal logic of rewriting. Technical Report UIUCDCS-R-2007-2815, CS Dept., University of Illinois at Urbana-Champaign (February 2007)Google Scholar
  32. 32.
    Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, Springer, Heidelberg (2003)Google Scholar
  33. 33.
    Misra, J.: A Discipline of Multiprogramming. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  34. 34.
    Nicola, R.D., Vaandrager, F.W.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)Google Scholar
  35. 35.
    Palomino, M., Pita, I.: Proving VLRL action properties with the Maude model checker. Electr. Notes Theor. Comput. Sci. 117, 113–133 (2005)CrossRefGoogle Scholar
  36. 36.
    Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 113–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS 1976, pp. 109–121. IEEE Computer Society Press, Los Alamitos (1976)Google Scholar
  38. 38.
    Thati, P., Sen, K., Martí-Oliet, N.: An executable specification of asynchronous Pi-Calculus semantics and may testing in Maude 2.0. In: Gadducci, F., Montanari, U. (eds.) Proc. 4th. Intl. Workshop on Rewriting Logic and its Applications. ENTCS, Elsevier, Amsterdam (2002)Google Scholar
  39. 39.
    Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • José Meseguer
    • 1
  1. 1.University of Illinois at Urbana-Champaign 

Personalised recommendations