Advertisement

AND/OR Multi-valued Decision Diagrams for Constraint Networks

  • Robert Mateescu
  • Rina Dechter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

The paper is an overview of a recently developed compilation data structure for graphical models, with specific application to constraint networks. The AND/OR Multi-Valued Decision Diagram (AOMDD) augments well known decision diagrams (OBDDs, MDDs) with AND nodes, in order to capture function decomposition structure. The AOMDD is based on a pseudo tree of the network, rather than a linear ordering of its variables. The AOMDD of a constraint network is a canonical form given a pseudo tree. We describe two main approaches for compiling the AOMDD of a constraint network. The first is a top down, search-based procedure, that works by applying reduction rules to the trace of the memory intensive AND/OR search algorithm. The second is a bottom up, inference-based procedure, that uses a Bucket Elimination schedule. For both algorithms, the compilation time and the size of the AOMDD are, in the worst case, exponential in the treewidth of the constraint graph, rather than pathwidth as is known for ordered binary decision diagrams (OBDDs).

Keywords

Boolean Function Search Tree Reduction Rule Primal Graph Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mateescu, R., Dechter, R.: Compiling constraint networks into AND/OR multi-valued decision diagrams (AOMDDs). In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 329–343. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Mateescu, R., Dechter, R.: And/or multi-valued decision diagrams (aomdds) for weighted graphical models. In: Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, UAI 2007 (2007)Google Scholar
  3. 3.
    Mateescu, R., Marinescu, R., Dechter, R.: AND/OR multi-valued decision diagrams for constraint optimization. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 498–513. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic networks and their AND/OR search space. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, pp. 120–129 (2004)Google Scholar
  5. 5.
    Dechter, R., Mateescu, R.: The impact of AND/OR search spaces on constraint satisfaction and counting. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 731–736. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artificial Intelligence 171, 73–106 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  9. 9.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)zbMATHCrossRefGoogle Scholar
  10. 10.
    Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal of the ACM 43, 193–224 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research (JAIR) 17, 229–264 (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Communications 10, 137–150 (1997)Google Scholar
  13. 13.
    Korf, R., Felner, A.: Disjoint pattern database heuristics. Artificial Intelligence 134, 9–22 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bertacco, V., Damiani, M.: The disjunctive decomposition of logic functions. In: International Conference on Computer-Aided Design (ICCAD), pp. 78–82 (1997)Google Scholar
  15. 15.
    Brayton, R., McMullen, C.: The decomposition and factorization of boolean expressions. In: ISCAS, Proceedings of the International Symposium on Circuits and Systems, pp. 49–54 (1982)Google Scholar
  16. 16.
    McMillan, K.L.: Hierarchical representation of discrete functions with application to model checking. In: Computer Aided Verification, pp. 41–54 (1994)Google Scholar
  17. 17.
    Fargier, H., Vilarem, M.: Compiling csps into tree-driven automata for interactive solving. Constraints 9, 263–287 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfaction problems. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 1076–1078 (1985)Google Scholar
  19. 19.
    Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 41–85 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for the constraint satisfaction problem. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), pp. 298–304 (1996)Google Scholar
  21. 21.
    Darwiche, A.: Recursive conditioning. Artificial Intelligence 125, 5–41 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function manipulation. In: International Conference on Computer-Aided Design (ICCAD), pp. 92–95 (1990)Google Scholar
  23. 23.
    Huang, J., Darwiche, A.: Dpll with a trace: From sat to knowledge compilation. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 156–162 (2005)Google Scholar
  24. 24.
    McAllester, D., Collins, M., Pereira, F.: Case-factor diagrams for structured probabilistic modeling. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, pp. 382–391 (2004)Google Scholar
  25. 25.
    Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–366 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Mateescu, R., Dechter, R.: The relationship between AND/OR search and variable elimination. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, UAI 2005, pp. 380–387 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Mateescu
    • 1
  • Rina Dechter
    • 2
  1. 1.Electrical Engineering DepartmentCalifornia Institute of TechnologyPasadena 
  2. 2.Donald Bren School of Information and Computer ScienceUniversity of California, IrvineIrvine 

Personalised recommendations