SPREADSPACES: Mathematically-Intelligent Graphical Spreadsheets

  • Nachum Dershowitz
  • Claude Kirchner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)


Starting from existing spreadsheet software, like Lotus 1-2-3®, Excel®, or Spreadsheet 2000®, we propose a sequence of enhancements to fully integrate constraint-based reasoning, culminating in a system for reactive, graphical, mathematical constructions. This is driven by our view of constraints as the essence of (spreadsheet) computation, rather than as an add-on tool for expert users. We call this extended computational metaphor, spreadspaces.


Inflation Rate Constraint Satisfaction Problem Constraint Solver Graphical Object Constraint Store 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burnett, M., Yang, S., Summet, J.: A scalable method for deductive generalization in the spreadsheet paradigm. Interactions 9(5), 9–11 (2002)CrossRefGoogle Scholar
  2. 2.
    Castro, C.: Building Constraint Satisfaction Problem Solvers Using Rewrite Rules and Strategies. Fundamenta Informaticae 34, 263–293 (1998)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Chitnis, S., Yennamani, M., Gupta, G.: Exsched: Solving constraint satisfaction problems with the spreadsheet paradigm. The Computing Research Repository (CoRR), abs/cs/0701109 (2007)Google Scholar
  4. 4.
    Apple Corp. Numbers (2008),
  5. 5.
  6. 6.
    Gupta, G., Akhter, S.F.: Knowledgesheet: A graphical spreadsheet interface for interactively developing a class of constraint programs. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 308–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Horn, B.: Constraint patterns as a basis for object-oriented programming. In: Proceedings of the SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 218–233. ACM Press, New York (1992)Google Scholar
  8. 8.
    Hower, W., Graf, W.: A bibliographical survey of constraint-based approaches to CAD, graphics, layout, visualization, and related topics. Knowl.-Based Syst. 9(7), 449–464 (1996)CrossRefGoogle Scholar
  9. 9.
    Chi, E.H.H., Riedl, J., Barry, P., Konstan, J.: Principles for information visualization spreadsheets. IEEE Comput. Graph. Appl. 18(4), 30–38 (1998)CrossRefGoogle Scholar
  10. 10.
    Hyvönen, E., Pascale, S.D.: A new basis for spreadsheet computing: Interval solver for Microsoft Excel. In: Proceedings of the Sixteenth National Conference on Artificial intelligence and the Eleventh Innovative Applications of Artificial Intelligence Conference (AAAI 1999/ IAAI 1999), Menlo Park, CA, pp. 799–806. American Association for Artificial Intelligence (1999)Google Scholar
  11. 11.
  12. 12.
    Jayaraman, B., Tambay, P.: Modeling engineering structures with constrained objects. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 28–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Konopasek, M., Jayaraman, S.: The TK! Solver Book: A Guide to Problem-Solving in Science, Engineering, Business, and Education. McGraw-Hill, Osborne (1984)Google Scholar
  14. 14.
    Konopasek, M., Jayaraman, S.: Constraint and declarative languages for engineering applications: The TK!Solver contribution. Proceedings of the IEEE 73(12), 1791–1806 (1985)CrossRefGoogle Scholar
  15. 15.
    Kunstmann, T., Frisch, M., Muller, R.: A declarative programming environment based on constraints. In: Proceedings of the 11th International IEEE Symposium on Visual Languages (VL 1995), Washington DC, September 1995, pp. 120–121. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  16. 16.
    Kwaiter, G., Gaildrat, V., Caubet, R.: Modelling with constraints: A bibliographical survey. In: Proceedings of the Second International Conference on Information Visualisation (IV 1998), pp. 211–220. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  17. 17.
    Montanari, U.: Networks of constraints: Fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Montanari, U., Rossi, F.: Constraint solving and programming: What’s next? ACM Comput. Surv., 70 (1996)Google Scholar
  19. 19.
    Panko, R.R., Halverson Jr., R.P.: Spreadsheets on trial: A survey of research on spreadsheet risks. In: Proceedings of the 29th Hawaii International Conference on System Sciences (HICSS): Decision Support and Knowledge-Based Systems, January 1996, vol. 2, pp. 326–335. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  20. 20.
    Power, D.J.: A brief history of spreadsheets (August 2004),
  21. 21.
  22. 22.
    Ramakrishnan, C.R., Ramakrishnan, I.V., Warren, D.S.: Deductive spreadsheets using tabled logic programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 391–405. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Stadelmann, M.: A spreadsheet based on constraints. In: Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 217–224 (1993)Google Scholar
  24. 24.
    Wilson, S.: Visual programming: Building a visual programming language. Mac. Tech. 13(4) (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nachum Dershowitz
    • 1
  • Claude Kirchner
    • 2
  1. 1.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael
  2. 2.INRIA Bordeaux – Sud-OuestTalenceFrance

Personalised recommendations