Skip to main content

A New Algorithm for Reconstruction of Phylogenetic Tree

  • Conference paper
Information Retrieval Technology (AIRS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4993))

Included in the following conference series:

  • 1392 Accesses

Abstract

The abstract should summarize the contents of the paper and should contain at least 70 and at most 150 words. It should be set in 9-point font size and should be inset 1.0 cm from the right and left margins. There should be two blank (10-point) lines before and after the abstract. This document is in the required format. In this paper, we present a new algorithm for reconstructing large phylogenetic tree. This algorithm is based on a family of Disk-Covering Methods (DCMs) which are divide-and-conquer techniques by dividing input dataset into smaller overlapping subset, constructing phylogenetic trees separately using some base methods and merging these subtrees into a single one. Provided the high memory efficiency of RAxML (which the program inherited from fastDNAml) compared to other programs and the good performance on largereal-world data it appears to be best-suited for use as the base method. The experiments clearly show that the proposed algorithm improves over stand-alone RAxML on all datasets, i.e. yields better likelihood values than RAxML in the same amount of time. This results serve as an argument for the choice of the proposed algorithm instead of stand-alone RAxML.

This work is partially funded by a Research Foundation granted by the Shenzhen University under grant no: 4DZH), the National Natural Science Foundation of China under grant no. 60572100, the Royal Society (U.K.) International Joint Projects 2006/R3 - Cost Share with NSFC (China).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  2. Bull, J.J., Wichman, H.A.: Applied evolution. Annual Review of Ecology and systematics 32, 183–217 (2001)

    Article  Google Scholar 

  3. Saitou, N., Nei, M.: The nigehbor-joining method: a new method for reconstructing phylogenetic tree. J Mol Evol 4, 406–425 (1987)

    Google Scholar 

  4. Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction. Mol Biol Evol 17, 189–197 (2000)

    Google Scholar 

  5. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simplemodel of sequence data. Mol Biol Evol 14, 685–695 (1997)

    Google Scholar 

  6. Desper, R., Gascuel, O.: Fast and Accurate Phylogeny Reconstruction Algorithms based on the Minimum-Evolution Principle. J Comput Biol 19, 687–705 (2002)

    Article  Google Scholar 

  7. Ranwez, V., Gascuel, O.: Improvement of Distance-Based phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets. Mol Biol Evol 19, 1952–1963 (2002)

    Google Scholar 

  8. Camin, J., Sokal, R.: A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  9. Felsentein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376 (1981)

    Article  Google Scholar 

  10. Steel, M.A., et al.: Loss of information in genetic distances. Nature 336, 118 (1988)

    Article  Google Scholar 

  11. Stelel, M.A.: The maximum likelihood point for a phylogenetic tree is not unique. Systematic Biology 43(4), 560–564 (1994)

    Article  Google Scholar 

  12. Huelsenbeck, J.P., Ronquist, F.: MYBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)

    Article  Google Scholar 

  13. Swofford, D.: PAUP*. Phylogenetic Analysis Using Parsimony (* and other mothods). Version 4.Sinauer Associates (2002)

    Google Scholar 

  14. Sjolander, K.: Phylogeneomi inference of protein molecular function: advances and challenges. Bioinformatics 20, 170–179 (2004)

    Article  Google Scholar 

  15. Roshan, U.: Algorithm techniques for improving the speed and accuracy of phylogenetic methods. PhD thesis (2004)

    Google Scholar 

  16. Roshan, U., Moret, B.M.E., Warnow, T., Williams, T.L.: Rec-i-dcm3: a fast algorithmic technique for reconstructing large phylogenetic trees. In: Proceedings of the IEEE Computational Systems Bioinformatics conference (CSB), Stanford, California, USA (2004)

    Google Scholar 

  17. Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast-converging method for phylogenetic tree reconstruction. Journal of Computational Biology 6, 369–386 (1999)

    Article  Google Scholar 

  18. Nakhleh, L., Roshan, U., St. John, K., Sun, J., Warnow, T.: Designing fast converging phylogenetic methods. In: Proc. 9th Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB 2001). Bioinformatics, vol. 17, pp. S190–S198. Oxford U. Press, Oxford (2001a)

    Google Scholar 

  19. Warnow, T., Moret, B., St. John, K.: Absolute convergence: True trees from short sequences. In: Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA 2001), pp. 186–195. SIAM Press, Philadelphia (2001)

    Google Scholar 

  20. Stamatakis, A., Ludwig, T., Meier, H.: Parallel inference of a 10.000-taxon phylogeny with maximum likelihood. In: Proceedings of 10th International EuroPar Conference, pp. 997–1004 (2004)

    Google Scholar 

  21. Stamatakis, A., Ludwig, T., Meier, H.: Raxml-iii:a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21(4), 456–463 (2005)

    Article  Google Scholar 

  22. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimatelarge phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704 (2003)

    Article  Google Scholar 

  23. Maidak, B., et al.: The RDP (ribosomal database project) continues. Nucleic Acids Research 28, 173–174 (2000)

    Article  Google Scholar 

  24. Wuyts, J., Van de Peer, Y., Winkelmans, T., De Watchter, R.: The European database on small subunit ribosomal RNA. Nucleic Acid Research 30, 183–185 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hang Li Ting Liu Wei-Ying Ma Tetsuya Sakai Kam-Fai Wong Guodong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Du, Z., Ji, Z. (2008). A New Algorithm for Reconstruction of Phylogenetic Tree. In: Li, H., Liu, T., Ma, WY., Sakai, T., Wong, KF., Zhou, G. (eds) Information Retrieval Technology. AIRS 2008. Lecture Notes in Computer Science, vol 4993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68636-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68636-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68633-0

  • Online ISBN: 978-3-540-68636-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics