Foundations of Two-Dimensional Conformal Quantum Field Theory

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


Correlation Function Vector Bundle Riemann Surface Unitary Representation Conformal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bea95]
    A. Beauville. Vector bundles on curves and generalized theta functions: Recent results and open problems. In: Current Topics in Complex Algebraic Geometry. Math. Sci. Res. Inst. Publ. 28, 17–33, Cambridge University Press, Cambridge, 1995.Google Scholar
  2. A. Beilinson and V. Drinfeld. Chiral Algebras. AMS Colloquium Publications 51, AMS, Providence, RI, 2004.Google Scholar
  3. [BPZ84]
    A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. In- finite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241 (1984), 333–380.CrossRefADSMathSciNetGoogle Scholar
  4. [BF01*]
    D. Ben-Zvi and E. Frenkel. Vertex Algebras and Algebraic Curves. AMS, Providence, RI, 2001.zbMATHGoogle Scholar
  5. [Del99*]
    P. Deligne et al. Quantum Fields and Strings: A Course for Mathematicians I, II. AMS, Providence, RI, 1999.Google Scholar
  6. [DMS96*]
    P. Di Francesco, P. Mathieu, and D. Sénéchal. Conformal Field Theory. Springer-Verlag, Berlin, 1996.Google Scholar
  7. [FFK89]
    G. Felder, J. Fröhlich, and J. Keller. On the structure of unitary conformal field theory, I. Existence of conformal blocks. Comm. Math. Phys. 124 (1989), 417–463.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [FS87]
    D. Friedan and S. Shenker. The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B 281 (1987), 509–545.CrossRefADSMathSciNetGoogle Scholar
  9. [Gaw89]
    K. Gawedski. Conformal field theory. Sém. Bourbaki 1988–89, Astérisque 177–178 (no 704) (1989) 95–126.Google Scholar
  10. [Gin89]
    P. Ginsparg. Introduction to Conformal Field Theory. Fields, Strings and Critical Phenomena, Les Houches 1988, Elsevier, Amsterdam, 1989.Google Scholar
  11. [HS66]
    N.S. Hawley and M. Schiffer. Half-order differentials on Riemann surfaces. Acta Math. 115 (1966), 175–236.CrossRefMathSciNetGoogle Scholar
  12. [IZ80]
    C. Itzykson and J.-B. Zuber. Quantum Field Theory. McGraw-Hill, New York, 1980.Google Scholar
  13. [Kac98*]
    V. Kac. Vertex Algebras for Beginners. University Lecture Series 10, AMS, Providencs, RI, 2nd ed., 1998.Google Scholar
  14. [Kak91]
    M. Kaku. Strings, Conformal Fields and Topology. Springer Verlag, Berlin, 1991.zbMATHGoogle Scholar
  15. [KNR94]
    S. Kumar, M. S. Narasimhan, and A. Ramanathan. Infinite Grassmannians and moduli spaces of G-bundles. Math. Ann. 300 (1994), 41–75.zbMATHCrossRefMathSciNetGoogle Scholar
  16. M. Lüscher and G. Mack. The energy-momentum tensor of critical quantum field theory in 1+1 dimensions. Unpublished Manuscript, 1976.Google Scholar
  17. [MS89]
    G. Moore and N. Seiberg. Classical and conformal field theory. Comm. Math. Phys. 123 (1989), 177–254.zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. [OS73]
    K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions I. Comm. Math. Phys. 31 (1973), 83–112.zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [OS75]
    K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions II. Comm. Math. Phys. 42 (1975), 281–305.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. [Seg88a]
    G. Segal. The definition of conformal field theory. Unpublished Manuscript, 1988. Reprinted in Topology, Geometry and Quantum Field Theory, U. Tillmann (Ed.), 432–574, Cambridge University Press, Cambridge, 2004.Google Scholar
  21. G. Segal. Two dimensional conformal field theories and modular functors. In: Proc. IXth Intern. Congress Math. Phys. Swansea, 22–37, 1988.Google Scholar
  22. G. Segal. Geometric aspects of quantum field theory. Proc. Intern. Congress Kyoto 1990, Math. Soc. Japan, 1387–1396, 1991.Google Scholar
  23. C. Sorger. La formule de Verlinde. Preprint, 1995. (to appear in Sem. Bourbaki, année 95 (1994), no 793)Google Scholar
  24. A. Tsuchiya, K. Ueno, and Y. Yamada. Conformal field theory on the universal family of stable curves with gauge symmetry. In: Conformal field theory and solvable lattice models. Adv. Stud. Pure Math. 16 (1989), 297–372.Google Scholar
  25. [Tyu03*]
    A. Tyurin. Quantization, Classical and Quantum Field Theory and Theta Functions, CRM Monograph Series 21 AMS, Providence, RI, 2003.zbMATHGoogle Scholar
  26. [Uen95]
    K. Ueno. On conformal field theory. In: Vector Bundles in Algebraic Geometry, N.J. Hitchin et al. (Eds.), 283–345. Cambridge University Press, Cambridge, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations