String Theory as a Conformal Field Theory

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


String Theory Poisson Bracket Vertex Operator Conformal Field Theory Hermitian Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DFN84]
    B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geometry – Methods and Applications I. Springer-Verlag, Berlin, 1984.zbMATHGoogle Scholar
  2. [Dic89]
    R. Dick. Conformal Gauge Fixing in Minkowski Space. Letters in Mathematical Physics 18, Springer, Dordrecht (1989), 67–76.Google Scholar
  3. [Die69]
    J. Dieudonné. Foundations of Modern Analysis, Volume 10-1. Academic Press, New York-London, 1969.Google Scholar
  4. [GSW87]
    M.B. Green, J.H. Schwarz, and E. Witten. Superstring Theory, Volume 1. Cambridge University Press, Cambridge, 1987.zbMATHGoogle Scholar
  5. [KR87]
    V. Kac and A.K. Raina. Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore, 1987.zbMATHGoogle Scholar
  6. [Tho84]
    C.B. Thorn. A proof of the no-ghost theorem using the Kac determinant. In: Vertex Operators in Mathematics and Physics, Lepowsky et al. (Eds.), 411–417. Springer Verlag, Berlin, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations