Representation Theory of the Virasoro Algebra

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


Representation Theory Invariant Subspace Unitary Representation Hermitian Form Verma Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BD04*]
    A. Beilinson and V. Drinfeld. Chiral Algebras. AMS Colloquium Publications 51, AMS, Providence, RI, 2004.Google Scholar
  2. [BPZ84]
    A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. In- finite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241 (1984), 333–380.CrossRefADSMathSciNetGoogle Scholar
  3. [CdG94]
    F. Constantinescu and H.F. de Groote. Geometrische und Algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren. Teubner, Stuttgart, 1994.zbMATHGoogle Scholar
  4. [FFK89]
    G. Felder, J. Fröhlich, and J. Keller. On the structure of unitary conformal field theory, I. Existence of conformal blocks. Comm. Math. Phys. 124 (1989), 417–463.zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. [FQS86]
    D. Friedan, Z. Qiu, and S. Shenker. Details of the nonunitary proof for highest weight representations of the Virasoro algebra. Comm. Math. Phys. 107 (1986), 535–542.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [FS87]
    D. Friedan and S. Shenker. The analytic geometry of two-dimensional conformal field theory. Nucl. Phys. B 281 (1987), 509–545.CrossRefADSMathSciNetGoogle Scholar
  7. [Gaw89]
    K. Gawedski. Conformal field theory. Sém. Bourbaki 1988–89, Astérisque 177–178 (no 704) (1989) 95–126.Google Scholar
  8. [Gin89]
    P. Ginsparg. Introduction to Conformal Field Theory. Fields, Strings and Critical Phenomena, Les Houches 1988, Elsevier, Amsterdam, 1989.Google Scholar
  9. [GKO86]
    P. Goddard, A. Kent, and D. Olive. Unitary representations of the Virasoro and Super-Virasoro algebras. Comm. Math. Phys. 103 (1986), 105–119.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [GO89]
    P. Goddard and D. Olive. Kac-Moody and Virasoro algebras in relation to quantum mechanics. Int. J. Mod. Phys. A1 (1989), 303–414.ADSMathSciNetGoogle Scholar
  11. L. Guieu and C. Roger. L’algèbre et le groupe de Virasoro: aspects géometriques et algébriques, généralisations. Preprint, 2005.Google Scholar
  12. [GW85]
    R. Goodman and N.R. Wallach. Projective unitary positive-energy representations of Diff(S). Funct. Anal. 63 (1985), 299–321.zbMATHCrossRefMathSciNetGoogle Scholar
  13. V. Kac. Highest weight representations of infinite dimensional Lie algebras. In: Proc. Intern. Congress Helsinki, Acad. Sci. Fenn., 299–304, 1980.Google Scholar
  14. [KR87]
    V. Kac and A.K. Raina. Highest Weight Representations of Infinite Dimensional Lie Algebras. World Scientific, Singapore, 1987.zbMATHGoogle Scholar
  15. [MS89]
    G. Moore and N. Seiberg. Classical and conformal field theory. Comm. Math. Phys. 123 (1989), 177–254.zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [Seg88a]
    G. Segal. The definition of conformal field theory. Unpublished Manuscript, 1988. Reprinted in Topology, Geometry and Quantum Field Theory, U. Tillmann (Ed.), 432–574, Cambridge University Press, Cambridge, 2004.Google Scholar
  17. G. Segal. Two dimensional conformal field theories and modular functors. In: Proc. IXth Intern. Congress Math. Phys. Swansea, 22–37, 1988.Google Scholar
  18. G. Segal. Geometric aspects of quantum field theory. Proc. Intern. Congress Kyoto 1990, Math. Soc. Japan, 1387–1396, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations