The Virasoro Algebra

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


Conformal Transformation Conformal Symmetry Central Extension Euclidean Plane Conformal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BPZ84]
    A.A. Belavin, A.M. Polyakov, and A.B. Zamolodchikov. In- finite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241 (1984), 333–380.CrossRefADSMathSciNetGoogle Scholar
  2. [GF68]
    I.M. Gelfand and D.B. Fuks. Cohomology of the Lie algebra of vector fields of a circle. Funct. Anal. Appl. 2 (1968), 342–343.CrossRefMathSciNetGoogle Scholar
  3. [Gin89]
    P. Ginsparg. Introduction to Conformal Field Theory. Fields, Strings and Critical Phenomena, Les Houches 1988, Elsevier, Amsterdam, 1989.Google Scholar
  4. [GO89]
    P. Goddard and D. Olive. Kac-Moody and Virasoro algebras in relation to quantum mechanics. Int. J. Mod. Phys. A1 (1989), 303–414.ADSMathSciNetGoogle Scholar
  5. [GSW87]
    M.B. Green, J.H. Schwarz, and E. Witten. Superstring Theory, Vol. 1. Cambridge University Press, Cambridge, 1987.Google Scholar
  6. [Her71]
    M.-R. Herman. Simplicité du groupe des Difféomorphismes de classe C, isotope à l’identité, du tore de dimension n. C.R. Acad. Sci. Paris 273 (1971), 232–234.zbMATHMathSciNetGoogle Scholar
  7. [Lem97*]L.
    [Lem97*]L. Lempert. The problem of complexifying a Lie group. In: Multidimensional Complex Analysis and Partial Differential Equations, P.D. Cordaro et al. (Eds.), Contemporary Mathematics 205, 169–176. AMS, Providence, RI, 1997.Google Scholar
  8. [Mil84]
    J. Milnor. Remarks on infinite dimensional Lie groups. In: Relativity, Groups and Topology II, Les Houches 1983, 1007–1058. North-Holland, Amsterdam, 1984.Google Scholar
  9. [Nit06*]
    T. Nitschke. Komplexifizierung unendlichdimensionaler Lie-Gruppen. Diplomarbeit, LMU München, 2006.Google Scholar
  10. [PS86*]
    A. Pressley and G. Segal. Loop Groups. Oxford University Press, Oxford, 1986.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations