Central Extensions of Groups

  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)


Hilbert Space Exact Sequence Unitary Group Central Extension Norm Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bar64]
    V. Bargmann. Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5 (1964), 862–868.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. [Diec91*]
    T. tom Dieck. Topologie. de Gruyter, Berlin, 1991.zbMATHGoogle Scholar
  3. [HJJS08*]
    Husemöller, D., Joachim, M., Jurco, B., Schottenloher, M.: Basic Bundle Theory and K-Cohomological Invariants. Lect. Notes Phys. 726. Springer, Heidelberg (2008)Google Scholar
  4. [Kui65*]
    N. Kuiper. The homotopy type of the unitary group of Hilbert space. Topology 3, (1965), 19–30.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Pal65*]
    R.S. Palais. On the homotopy type of certain groups of operators. Topology 3 (1965), 271–279.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [PS86*]
    A. Pressley and G. Segal. Loop Groups. Oxford University Press, Oxford, 1986.zbMATHGoogle Scholar
  7. [RS80*]
    M. Reed and B. Simon. Methods of modern Mathematical Physics, Vol. 1: Functional Analysis. Academic Press, New York, 1980.Google Scholar
  8. [Scho95]
    M. Schottenloher. Geometrie und Symmetrie in der Physik. Vieweg, Braunschweig, 1995.zbMATHGoogle Scholar
  9. [ST65*]
    D. Shale and W.F. Stinespring. Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 (1965), 315–322.zbMATHMathSciNetGoogle Scholar
  10. [Sim68]
    D. Simms. Lie Groups and Quantum Mechanics. Lecture Notes in Mathematics 52, Springer Verlag, Berlin, 1968.Google Scholar
  11. [Wig31]
    E. Wigner. Gruppentheorie. Vieweg, Braunschweig, 1931.Google Scholar
  12. [Wur01*]
    T. Wurzbacher. Fermionic second quantization and the geometry of the restricted Grassmannian. Infinite dimensional Kähler manifolds (Oberwolfach 1995), DMV Sem. 31, 351–399. Birkhäuser, Basel, 2001.Google Scholar
  13. [Wur06*]
    T. Wurzbacher. An elementary proof of the homotopy equivalence between the restricted general linear group and the space of Fredholm operators. In: Analysis, Geometry and Topology of Elliptic Operators, 411–426, World Scientific Publishing, Hackensack, NJ, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations