Advertisement

Appendix A

Some Further Developments
  • M. Schottenloher
Part of the Lecture Notes in Physics book series (LNP, volume 759)

Keywords

Vertex Operator Open String Vertex Operator Algebra High Weight Representation Statistical Mechanic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB03*]
    M. Bauer and D. Bernard. Conformal field theories of stochastic Loewner evolutions. Comm. Math. Phys. 239 (2003) 493–521.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. [Bor86*]
    R. E. Borcherds. Vertex algebras, Kac-Moody algebra and the monster. Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.Google Scholar
  3. [Car89*]
    J.L. Cardy. Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B324 (1989), 581–596.CrossRefADSMathSciNetGoogle Scholar
  4. J.L. Cardy. Boundary Conformal Field Theory. [arXiv:hepth/ 0411189v2] (2004) (To appear in Encyclopedia of Mathematical Physics, Elsevier).Google Scholar
  5. [Car05*]
    J.L. Cardy. SLE for theoretical physicists. Ann. Phys. 318 (2005), 81–118.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [FFFS00a*]
    G. Felder, J. Fröhlich, J. Fuchs, and C. Schweigert. Conformal boundary conditions and three-dimensional topological field theory. Phys. Rev. Lett. 84 (2000), 1659–1662.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. [FFFS00b*]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert. The geometry of WZW branes. J. Geom. Phys. 34 (2000), 162–190.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [FLM88*]
    I. Frenkel, J. Lepowsky, and A. Meurman. Vertex Operator Algebras and the Monster. Academic Press, New York, 1988.zbMATHGoogle Scholar
  9. [FW03*]
    R. Friedrich and W. Werner. Conformal restriction, highest weight representations and SLE. Comm. Math. Phys. 243 (2003), 105–122.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [Gan06*]
    T. Gannon. Moonshine Beyond the Monster. The Bridge Connecting Algebra, Modular Forms and Physics. Cambridge University Press, Cambridge, 2006.zbMATHCrossRefGoogle Scholar
  11. [LPSA94]
    R. Langlands, P. Pouliot, and Y. Saint-Aubin. Conformal invariance in two-dimensional percolation. Bull. Am. Math. Soc. 30 (1994), 1–61.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Law05*]
    G.F. Lawler. Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. AMS, Providence, RI, 2005.Google Scholar
  13. [Schr00*]
    O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221–288.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Smi01*]
    S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris 333 (2001), 239–244.zbMATHADSGoogle Scholar
  15. [Zub02*]
    J.B. Zuber. CFT, BCFT, ADE and all that. In: Quantum Symmetries in Theoretical Physics and Mathematics, Coquereaux et alii (Eds.), Contemporary Mathematics 294, 233–271, AMS, Providence, RI, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Schottenloher
    • 1
  1. 1.Ludwig-Maximilians-Universitä München80333 MünchenGermany

Personalised recommendations